
ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

NAME
ovs−fields − protocol header fields in OpenFlow and Open vSwitch

INTRODUCTION
This document aims to comprehensively document all of the fields, both standard and non-standard, sup-
ported by OpenFlow or Open vSwitch, regardless of origin.

Fields
A field is a property of a packet. Most familiarly, data fieldsare fields that can be extracted from a packet.
Most data fields are copied directly from protocol headers, e.g. at layer 2, the Ethernet source and destina-
tion addresses, or the VLAN ID; at layer 3, the IPv4 or IPv6 source and destination; and at layer 4, the TCP
or UDP ports. Other data fields are computed, e.g.ip_frag describes whether a packet is a fragment but it is
not copied directly from the IP header.

Some data fields, calledroot fields, are always present as a consequence of the basic networking technology
in use. The Ethernet header fields are root fields in current versions of Open vSwitch, though future ver-
sions might support other roots. (Currently, to support LISP tunnels, which do not encapsulate an Ethernet
header, Open vSwitch synthesizes one.)

Other data fields are not always present. A packet contains ARP fields, for example, only when its Ethernet
header indicates the Ethertype for ARP, 0x0806. In this documentation, we say that a field isapplicable
when it is present in a packet, andinapplicablewhen it is not. (These are not standard terms.) We refer to
the conditions that determine whether a field is applicable asprerequisites. Some VLAN-related fields are a
special case: these fields are always applicable, but have a designated value or bit that indicates whether a
VLAN header is present, with the remaining values or bits indicating the VLAN header’s content (if it is
present).

An inapplicable field does not have a value, not even a nominal ‘‘value’’ such as all-zero-bits. In many cir-
cumstances, OpenFlow and Open vSwitch allow references only to applicable fields. For example, one may
match (seeMatching, below) a given field only if the match includes the field’s prerequisite, e.g. matching
an ARP field is only allowed if one also matches on Ethertype 0x0806.

Sometimes a packet may contain multiple instances of a header. For example, a packet may contain multi-
ple VLAN or MPLS headers, and tunnels can cause any data field to recur. OpenFlow and Open vSwitch do
not address these cases uniformly. For VLAN and MPLS headers, only the outermost header is accessible,
so that inner headers may be accessed only by ‘‘popping’’ (removing) the outer header. (Open vSwitch sup-
ports only a single VLAN header in any case.) For tunnels, e.g. GRE or VXLAN, the outer header and
inner headers are treated as different data fields.

Many network protocols are built in layers as a stack of concatenated headers. Each header typically con-
tains a ‘‘next type’’ fi eld that indicates the type of the protocol header that follows, e.g. Ethernet contains an
Ethertype and IPv4 contains a IP protocol type. The exceptional cases, where protocols are layered but an
outer layer does not indicate the protocol type for the inner layer, or giv es only an ambiguous indication,
are troublesome. An MPLS header, for example, only indicates whether another MPLS header or some
other protocol follows, and in the latter case the inner protocol must be known from the context. In these
exceptional cases, OpenFlow and Open vSwitch cannot provide insight into the inner protocol data fields
without additional context, and thus they treat all later data fields as inapplicable until an OpenFlow action
explicitly specifies what protocol follows. In the case of MPLS, the OpenFlow ‘‘pop MPLS’’ action that
removes the last MPLS header from a packet provides this context, as the Ethertype of the payload. See
Layer 2.5: MPLSfor more information.

OpenFlow and Open vSwitch support some fields other than data fields.Metadata fieldsrelate to the origin
or treatment of a packet, but they are not extracted from the packet data itself. One example is the physical
port on which a packet arrived at the switch.Register fieldsact like variables: they giv e an OpenFlow
switch space for temporary storage while processing a packet. Existing metadata and register fields have no
prerequisites.

A field’s value consists of an integral number of bytes. For data fields, sometimes those bytes are taken
directly from the packet. Other data fields are copied from a packet with padding (usually with zeros and in
the most significant positions). The remaining data fields are transformed in other ways as they are copied

Open vSwitch 2.7.90 1

ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

from the packets, to make them more useful for matching.

Matching
The most important use of fields in OpenFlow is matching, to determine whether particular field values
agree with a set of constraints called amatch. A match consists of zero or more constraints on individual
fields, all of which must be met to satisfy the match. (A match that contains no constraints is always satis-
fied.) OpenFlow and Open vSwitch support a number of forms of matching on individual fields:

Exact match, e.g.nw_src=10.1.2.3
Only a particular value of the field is matched; for example, only one particular source IP
address. Exact matches are written asfield=value. The forms accepted forvaluedepend
on the field.

All fields support exact matches.

Bitwise match, e.g.nw_src=10.1.0.0/255.255.0.0
Specific bits in the field must have specified values; for example, only source IP
addresses in a particular subnet. Bitwise matches are written asfield=value/mask, where
valueandmasktake one of the forms accepted for an exact match onfield. Some fields
accept other forms for bitwise matches; for example,nw_src=10.1.0.0/255.255.0.0may
also be writtennw_src=10.1.0.0/16.

Most OpenFlow switches do not allow every bitwise matching on every field (and before
OpenFlow 1.2, the protocol did not even provide for the possibility for most fields). Even
switches that do allow bitwise matching on a given field may restrict the masks that are
allowed, e.g. by allowing matches only on contiguous sets of bits starting from the most
significant bit, that is, ‘‘CIDR’’ masks [RFC 4632]. Open vSwitch does not allows bit-
wise matching on every field, but it allows arbitrary bitwise masks on any field that does
support bitwise matching. (Older versions had some restrictions, as documented in the
descriptions of individual fields.)

Wildcard, e.g. ‘‘any nw_src’’
The value of the field is not constrained. Wildcarded fields may be written asfield=* ,
although it is unusual to mention them at all. (When specifying a wildcard explicitly in a
command invocation, be sure to using quoting to protect against shell expansion.)

There is a tiny difference between wildcarding a field and not specifying any match on a
field: wildcarding a field requires satisfying the field’s prerequisites.

Some types of matches on individual fields cannot be expressed directly with OpenFlow and Open vSwitch.
These can be expressed indirectly:

Set match, e.g. ‘‘tcp_dst ∈ {80, 443, 8080}’’
The value of a field is one of a specified set of values; for example, the TCP destination
port is 80, 443, or 8080.

For matches used in flows (seeFlows, below), multiple flows can simulate set matches.

Range match, e.g. ‘‘1000≤ tcp_dst≤ 1999’’
The value of the field must lie within a numerical range, for example, TCP destination
ports between 1000 and 1999.

Range matches can be expressed as a collection of bitwise matches. For example, sup-
pose that the goal is to match TCP source ports 1000 to 1999, inclusive. The binary repre-
sentations of 1000 and 1999 are:

01111101000
11111001111

The following series of bitwise matches will match 1000 and 1999 and all the values in
between:

Open vSwitch 2.7.90 2

ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

01111101xxx
0111111xxxx
10xxxxxxxxx
110xxxxxxxx
1110xxxxxxx
11110xxxxxx
1111100xxxx

which can be written as the following matches:

tcp,tp_src=0x03e8/0xfff8
tcp,tp_src=0x03f0/0xfff0
tcp,tp_src=0x0400/0xfe00
tcp,tp_src=0x0600/0xff00
tcp,tp_src=0x0700/0xff80
tcp,tp_src=0x0780/0xffc0
tcp,tp_src=0x07c0/0xfff0

Inequality match, e.g. ‘‘tcp_dst≠ 80’’
The value of the field differs from a specified value, for example, all TCP destination
ports except 80.

An inequality match on ann-bit field can be expressed as a disjunction ofn 1-bit
matches. For example, the inequality match ‘‘vlan_pcp ≠ 5’’ can be expressed as
‘‘ vlan_pcp = 0/4 or vlan_pcp = 2/2 or vlan_pcp = 0/1.’’ For matches used in flows (see
Flows, below), sometimes one can more compactly express inequality as a higher-priority
flow that matches the exceptional case paired with a lower-priority flow that matches the
general case.

Alternatively, an inequality match may be converted to a pair of range matches, e.g.
tcp_src ≠ 80 may be expressed as ‘‘0 ≤ tcp_src < 80 or 80 <tcp_src ≤ 65535’’, and then
each range match may in turn be converted to a bitwise match.

Conjunctive match, e.g. ‘‘tcp_src ∈ {80, 443, 8080} andtcp_dst ∈ {80, 443, 8080}’’
As an OpenFlow extension, Open vSwitch supports matching on conditions on conjunc-
tions of the previously mentioned forms of matching. See the documentation forconj_id
for more information.

All of these supported forms of matching are special cases of bitwise matching. In some cases this influ-
ences the design of field values.ip_frag is the most prominent example: it is designed to make all of the
practically useful checks for IP fragmentation possible as a single bitwise match.

Shorthands

Some matches are very commonly used, so Open vSwitch accepts shorthand notations. In some cases,
Open vSwitch also uses shorthand notations when it displays matches. The following shorthands are
defined, with their long forms shown on the right side:

ip eth_type=0x0800

ipv6 eth_type=0x86dd

icmp eth_type=0x0800,ip_proto=1

icmp6 eth_type=0x86dd,ip_proto=58

tcp eth_type=0x0800,ip_proto=6

tcp6 eth_type=0x86dd,ip_proto=6

udp eth_type=0x0800,ip_proto=17

Open vSwitch 2.7.90 3

ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

udp6 eth_type=0x86dd,ip_proto=17

sctp eth_type=0x0800,ip_proto=132

sctp6 eth_type=0x86dd,ip_proto=132

arp eth_type=0x0806

rarp eth_type=0x8035

mpls eth_type=0x8847

mplsm eth_type=0x8848

Evolution of OpenFlow Fields
The discussion so far applies to all OpenFlow and Open vSwitch versions. This section starts to draw in
specific information by explaining, in broad terms, the treatment of fields and matches in each OpenFlow
version.

OpenFlow 1.0

OpenFlow 1.0 defined the OpenFlow protocol format of a match as a fixed-length data structure that could
match on the following fields:

• Ingress port.

• Ethernet source and destination MAC.

• Ethertype (with a special value to match frames that lack an Ethertype).

• VLAN ID and priority.

• IPv4 source, destination, protocol, and DSCP.

• TCP source and destination port.

• UDP source and destination port.

• ICMPv4 type and code.

• ARP IPv4 addresses (SPA and TPA) and opcode.

Each supported field corresponded to some member of the data structure. Some members represented mul-
tiple fields, in the case of the TCP, UDP, ICMPv4, and ARP fields whose presence is mutually exclusive.
This also meant that some members were poor fits for their fields: only the low 8 bits of the 16-bit ARP
opcode could be represented, and the ICMPv4 type and code were padded with 8 bits of zeros to fit in the
16-bit members primarily meant for TCP and UDP ports. An additional bitmap member indicated, for each
member, whether its field should be an ‘‘exact’’ or ‘ ‘wildcarded’’ match (seeMatching), with additional
support for CIDR prefix matching on the IPv4 source and destination fields.

Simplicity was recognized early on as the main virtue of this approach. Obviously, any fixed-length data
structure cannot support matching new protocols that do not fit. There was no room, for example, for
matching IPv6 fields, which was not a priority at the time. Lack of room to support matching the Ethernet
addresses inside ARP packets actually caused more of a design problem later, leading to an Open vSwitch
extension action specialized for dropping ‘‘spoofed’’ A RP packets in which the frame and ARP Ethernet
source addressed differed. (This extension was never standardized. Open vSwitch dropped support for it a
few releases after it added support for full ARP matching.)

The design of the OpenFlow fixed-length matches also illustrates compromises, in both directions, between
the strengths and weaknesses of software and hardware that have always influenced the design of Open-
Flow. Support for matching ARP fields that do fit in the data structure was only added late in the design
process (and remained optional in OpenFlow 1.0), for example, because common switch ASICs did not
support matching these fields.

The compromises in favor of software occurred for more complicated reasons. The OpenFlow designers did
not know how to implement matching in software that was fast, dynamic, and general. (A way was later
found [Srinivasan].) Thus, the designers sought to support dynamic, general matching that would be fast in
realistic special cases, in particular when all of the matches weremicroflows, that is, matches that specify

Open vSwitch 2.7.90 4

ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

ev ery field present in a packet, because such matches can be implemented as a single hash table lookup.
Contemporary research supported the feasibility of this approach: the number of microflows in a campus
network had been measured to peak at about 10,000 [Casado, section 3.2]. (Calculations show that this can
only be true in a lightly loaded network [Pepelnjak].)

As a result, OpenFlow 1.0 required switches to treat microflow matches as the highest possible priority.
This let software switches perform the microflow hash table lookup first. Only on failure to match a
microflow did the switch need to fall back to checking the more general and presumed slower matches.
Also, the OpenFlow 1.0 flow match was minimally flexible, with no support for general bitwise matching,
partly on the basis that this seemed more likely amenable to relatively efficient software implementation.
(CIDR masking for IPv4 addresses was added relatively late in the OpenFlow 1.0 design process.)

Microflow matching was later discovered to aid some hardware implementations. The TCAM chips used
for matching in hardware do not support priority in the same way as OpenFlow but instead tie priority to
ordering [Pagiamtzis]. Thus, adding a new match with a priority between the priorities of existing matches
can require reordering an arbitrary number of TCAM entries. On the other hand, when microflows are high-
est priority, they can be managed as a set-aside portion of the TCAM entries.

The emphasis on matching microflows also led designers to carefully consider the bandwidth requirements
between switch and controller: to maximize the number of microflow setups per second, one must minimize
the size of each flow’s description. This favored the fixed-length format in use, because it expressed com-
mon TCP and UDP microflows in fewer bytes than more flexible ‘‘type-length-value’’ (TLV) formats.
(Early versions of OpenFlow also avoided TLVs in general to head off protocol fragmentation.)

Inapplicable Fields

OpenFlow 1.0 does not clearly specify how to treat inapplicable fields. The members for inapplicable fields
are always present in the match data structure, as are the bits that indicate whether the fields are matched,
and the ‘‘correct’’ member and bit values for inapplicable fields is unclear. OpenFlow 1.0 implementations
changed their behavior over time as priorities shifted. The early OpenFlow reference implementation, moti-
vated to make every flow a microflow to enable hashing, treated inapplicable fields as exact matches on a
value of 0. Initially, this behavior was implemented in the reference controller only.

Later, the reference switch was also changed to actually force any wildcarded inapplicable fields into exact
matches on 0. The latter behavior sometimes caused problems, because the modified flow was the one
reported back to the controller later when it queried the flow table, and the modifications sometimes meant
that the controller could not properly recognize the flow that it had added. In retrospect, perhaps this prob-
lem should have alerted the designers to a design error, but the ability to use a single hash table was held to
be more important than almost every other consideration at the time.

When more flexible match formats were introduced much later, they disallowed any mention of inapplica-
ble fields as part of a match. This raised the question of how to translate between this new format and the
OpenFlow 1.0 fixed format. It seemed somewhat inconsistent and backward to treat fields as exact-match in
one format and forbid matching them in the other, so instead the treatment of inapplicable fields in the
fixed-length format was changed from exact match on 0 to wildcarding. (A better classifier had by now
eliminated software performance problems with wildcards.)

The OpenFlow 1.0.1 errata (released only in 2012) added some additional explanation [OpenFlow 1.0.1,
section 3.4], but it did not mandate specific behavior because of variation among implementations.

OpenFlow 1.1

The OpenFlow 1.1 protocol match format was designed as a type/length/value (TLV) format to allow for
future flexibility . The specification standardized only a single typeOFPMT_STANDARD (0) with a fixed-
size payload, described here. The additional fields and bitwise masks in OpenFlow 1.1 cause this match
structure to be over twice as large as in OpenFlow 1.0, 88 bytes versus 40.

OpenFlow 1.1 added support for the following fields:

• SCTP source and destination port.

Open vSwitch 2.7.90 5

ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

• MPLS label and traffic control (TC) fields.

• One 64-bit register (named ‘‘metadata’’).

OpenFlow 1.1 increased the width of the ingress port number field (and all other port numbers in the proto-
col) from 16 bits to 32 bits.

OpenFlow 1.1 increased matching flexibility by introducing arbitrary bitwise matching on Ethernet and
IPv4 address fields and on the new ‘‘metadata’’ register field. Switches were not required to support all pos-
sible masks [OpenFlow 1.1, section 4.3].

By a strict reading of the specification, OpenFlow 1.1 removed support for matching ICMPv4 type and
code [OpenFlow 1.1, section A.2.3], but this is likely an editing error because ICMP matching is described
elsewhere [OpenFlow 1.1, Table 3, Table 4, Figure 4]. Open vSwitch does support ICMPv4 type and code
matching with OpenFlow 1.1.

OpenFlow 1.1 avoided the pitfalls of inapplicable fields that OpenFlow 1.0 encountered, by requiring the
switch to ignore the specified field values [OpenFlow 1.1, section A.2.3]. It also implied that the switch
should ignore the bits that indicate whether to match inapplicable fields.

Physical Ingress Port

OpenFlow 1.1 introduced a new pseudo-field, the physical ingress port. The physical ingress port is only a
pseudo-field because it cannot be used for matching. It appears only one place in the protocol, in the
‘‘ packet-in’’ message that passes a packet received at the switch to an OpenFlow controller.

A packet’s ingress port and physical ingress port are identical except for packets processed by a switch fea-
ture such as bonding or tunneling that makes a packet appear to arrive on a ‘‘virtual’ ’ port associated with
the bond or the tunnel. For such packets, the ingress port is the virtual port and the physical ingress port is,
naturally, the physical port. Open vSwitch implements both bonding and tunneling, but its bonding imple-
mentation does not use virtual ports and its tunnels are typically not on the same OpenFlow switch as their
physical ingress ports (which need not be part of any switch), so the ingress port and physical ingress port
are always the same in Open vSwitch.

OpenFlow 1.2

OpenFlow 1.2 abandoned the fixed-length approach to matching. One reason was size, since adding support
for IPv6 address matching (now seen as important), with bitwise masks, would have added 64 bytes to the
match length, increasing it from 88 bytes in OpenFlow 1.1 to over 150 bytes. Extensibility had also become
important as controller writers increasingly wanted support for new fields without having to change mes-
sages throughout the OpenFlow protocol. The challenges of carefully defining fixed-length matches to
avoid problems with inapplicable fields had also become clear over time.

Therefore, OpenFlow 1.2 adopted a flow format using a flexible type-length-value (TLV) representation, in
which each TLV expresses a match on one field. These TLVs were in turn encapsulated inside the outer
TLV wrapper introduced in OpenFlow 1.1 with the new identifierOFPMT_OXM (1). (This wrapper ful-
filled its intended purpose of reducing the amount of churn in the protocol when changing match formats;
some messages that included matches remained unchanged from OpenFlow 1.1 to 1.2 and later versions.)

OpenFlow 1.2 added support for the following fields:

• ARP hardware addresses (SHA and THA).

• IPv4 ECN.

• IPv6 source and destination addresses, flow label, DSCP, ECN, and protocol.

• TCP, UDP, and SCTP port numbers when encapsulated inside IPv6.

• ICMPv6 type and code.

• ICMPv6 Neighbor Discovery target address and source and target Ethernet addresses.

The OpenFlow 1.2 format, calledOXM (OpenFlow Extensible Match), was modeled closely on an exten-
sion to OpenFlow 1.0 introduced in Open vSwitch 1.1 calledNXM (Nicira Extended Match). Each OXM or
NXM TLV has the following format:

Open vSwitch 2.7.90 6

ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

vendor/class field
16 7

type

HM length
1 8

body
length bytes

The most significant 16 bits of the NXM or OXM header, calledvendor by NXM andclassby OXM, iden-
tify an organization permitted to allocate identifiers for fields. NXM allocates only two vendors, 0x0000 for
fields supported by OpenFlow 1.0 and 0x0001 for fields implemented as an Open vSwitch extension. OXM
assigns classes as follows:

0x0000 (OFPXMC_NXM_0).
0x0001 (OFPXMC_NXM_1).

Reserved for NXM compatibility.

0x0002 to 0x7fff
Reserved for allocation to ONF members, but none yet assigned.

0x8000 (OFPXMC_OPENFLOW_BASIC)
Used for most standard OpenFlow fields.

0x8001 (OFPXMC_PACKET_REGS)
Used for packet register fields in OpenFlow 1.5 and later.

0x8002 to 0xfffe
Reserved for the OpenFlow specification.

0xffff (OFPXMC_EXPERIMENTER)
Experimental use.

Whenclass is 0xffff , the OXM header is extended to 64 bits by using the first 32 bits of the body as an
experimenter field whose most significant byte is zero and whose remaining bytes are an Organizationally
Unique Identifier (OUI) assigned by the IEEE [IEEE OUI], as shown below. OpenFlow says that support
for experimenter fields is optional. Open vSwitch 2.4 and later does support them, primarily so that it can
support theONFOXM_ET_* code points defined by official Open Networking Foundation extensions to
OpenFlow 1.3 in e.g. [TCP Flags Match Field Extension].

class field
16

0xffff

7
type

HM length
1 8

zero OUI
8

0x00

24
experimenter

body
(length - 4) bytes

Taken as a unit, class(or vendor), field, and experimenter (when present) uniquely identify a particular
field.

Whenhasmask(abbreviatedHM above) is 0, the OXM is an exact match on an entire field. In this case,
the body (excluding the experimenter field, if present) is a single value to be matched.

Whenhasmaskis 1, the OXM is a bitwise match. The body (excluding the experimenter field) consists of a
value to match, followed by the bitwise mask to apply. A 1-bit in the mask indicates that the corresponding
bit in the value should be matched and a 0-bit that it should be ignored. For example, for an IP address
field, a value of 192.168.0.0 followed by a mask of 255.255.0.0 would match addresses in the
196.168.0.0/16 subnet.

• Some fields might not support masking at all, and some fields that do support masking
might restrict it to certain patterns. For example, fields that have IP address values might
be restricted to CIDR masks. The descriptions of individual fields note these restrictions.

• An OXM TLV with a mask that is all zeros is not useful (although it is not forbidden),
because it is has the same effect as omitting the TLV entirely.

• It is not meaningful to pair a 0-bit in an OXM mask with a 1-bit in its value, and Open
vSwitch rejects such an OXM with the error OFPBMC_BAD_WILDCARDS , as

Open vSwitch 2.7.90 7

ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

required by OpenFlow 1.3 and later.

The length identifies the number of bytes in the body, including the 4-byteexperimenter header, if i t is
present. Each OXM TLV has a fixed length; that is, given class, field, experimenter (if present), andhas-
mask, length is a constant. Thelength is included explicitly to allow software to minimally parse OXM
TLVs of unknown types.

OXM TLVs must be ordered so that a field’s prerequisites are satisfied before it is parsed. For example, an
OXM TLV that matches on the IPv4 source address field is only allowed following an OXM TLV that
matches on the Ethertype for IPv4. Similarly, an OXM TLV that matches on the TCP source port must fol-
low a TLV that matches an Ethertype of IPv4 or IPv6 and one that matches an IP protocol of TCP (in that
order). The order of OXM TLVs is not otherwise restricted; no canonical ordering is defined.

A giv en field may be matched only once in a series of OXM TLVs.

OpenFlow 1.3

OpenFlow 1.3 showed OXM to be largely successful, by adding new fields without making any changes to
how flow matches otherwise worked. It added OXMs for the following fields supported by Open vSwitch:

• Tunnel ID for ports associated with e.g. VXLAN or keyed GRE.

• MPLS ‘‘bottom of stack’’ (BOS) bit.

OpenFlow 1.3 also added OXMs for the following fields not documented here and not yet implemented by
Open vSwitch:

• IPv6 extension header handling.

• PBB I-SID.

OpenFlow 1.4

OpenFlow 1.4 added OXMs for the following fields not documented here and not yet implemented by Open
vSwitch:

• PBB UCA.

OpenFlow 1.5

OpenFlow 1.5 added OXMs for the following fields supported by Open vSwitch:

• TCP flags.

• Packet registers.

• The output port in the OpenFlow action set.

OpenFlow 1.5 also added OXMs for the following fields not documented here and not yet implemented by
Open vSwitch:

• Packet type.

FIELDS REFERENCE
The following sections document the fields that Open vSwitch supports. Each section provides introductory
material on a group of related fields, followed by information on each individual field. In addition to field-
specific information, each field begins with a table with entries for the following important properties:

Name The field’s name, used for parsing and formatting the field, e.g. inovs−ofctl commands.
For historical reasons, some fields have an additional name that is accepted as an alterna-
tive in parsing. This name, when there is one, is listed as well, e.g. ‘‘ tun (aka tun-
nel_id).’’

Width The field’s width, always a multiple of 8 bits. Some fields don’t use all of the bits, so this
may be accompanied by an explanation. For example, OpenFlow embeds the 2-bit IP
ECN field as as the low bits in an 8-bit byte, and so its width is expressed as ‘‘8 bits (only
the least-significant 2 bits may be nonzero).’’

Open vSwitch 2.7.90 8

ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

Format How a value for the field is formatted or parsed by, e.g.,ovs−ofctl. Some possibilities are
generic:

decimal
Formats as a decimal number. On input, accepts decimal numbers or hexadeci-
mal numbers prefixed by0x.

hexadecimal
Formats as a hexadecimal number prefixed by0x. On input, accepts decimal
numbers or hexadecimal numbers prefixed by0x. (The default for parsing isnot
hexadecimal: only a0x prefix causes input to be treated as hexadecimal.)

Ethernet
Formats and accepts the common Ethernet address formatxx:xx:xx:xx:xx:xx.

IPv4 Formats and accepts the dotted-quad formata.b.c.d. For bitwise matches, for-
mats and acceptsaddress/lengthCIDR notation in addition toaddress/mask.

IPv6 Formats and accepts the common IPv6 address formats, plus CIDR notation for
bitwise matches.

OpenFlow 1.0 port
Accepts 16-bit port numbers in decimal, plus OpenFlow well-known port names
(e.g.IN_PORT) in uppercase or lowercase.

OpenFlow 1.1+ port
Same syntax as OpenFlow 1.0 ports but for 32-bit OpenFlow 1.1+ port number
fields.

Other, field-specific formats are explained along with their fields.

Masking
For most fields, this says ‘‘arbitrary bitwise masks,’’ meaning that a flow may match any
combination of bits in the field. Some fields instead say ‘‘exact match only,’’ which
means that a flow that matches on this field must match on the whole field instead of just
certain bits. Either way, this reports masking support for the latest version of Open
vSwitch using OXM or NXM (that is, either OpenFlow 1.2+ or OpenFlow 1.0 plus Open
vSwitch NXM extensions). In particular, OpenFlow 1.0 (without NXM) and 1.1 don’t
always support masking even if Open vSwitch itself does; refer to theOpenFlow 1.0 and
OpenFlow 1.1 rows to learn about masking with these protocol versions.

Prerequisites
Requirements that must be met to match on this field. For example,ip_src has IPv4 as a
prerequisite, meaning that a match must includeeth_type=0x0800to match on the IPv4
source address. The following prerequisites, with their requirements, are currently in use:

none (no requirements)

VLAN VID
vlan_tci=0x1000/0x1000(i.e. a VLAN header is present)

ARP eth_type=0x0806(ARP) oreth_type=0x8035(RARP)

IPv4 eth_type=0x0800

IPv6 eth_type=0x86dd

IPv4/IPv6
IPv4 or IPv6

MPLS eth_type=0x8847or eth_type=0x8848

TCP IPv4/IPv6 andip_proto=6

UDP IPv4/IPv6 andip_proto=17

Open vSwitch 2.7.90 9

ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

SCTP IPv4/IPv6 andip_proto=132

ICMPv4
IPv4 andip_proto=1

ICMPv6
IPv6 andip_proto=58

ND solicit
ICMPv6 andicmp_type=135andicmp_code=0

ND advert
ICMPv6 andicmp_type=136andicmp_code=0

ND ND solicit or ND advert

The TCP, UDP, and SCTP prerequisites also have the special requirement thatnw_frag is
not being used to select ‘‘later fragments.’’ T his is because only the first fragment of a
fragmented IPv4 or IPv6 datagram contains the TCP or UDP header.

Access Most fields are ‘‘read/write,’’ w hich means that common OpenFlow actions like set_field
can modify them. Fields that are ‘‘read-only’’ cannot be modified in these general-pur-
pose ways, although there may be other ways that actions can modify them.

OpenFlow 1.0
OpenFlow 1.1

These rows report the level of support that OpenFlow 1.0 or OpenFlow 1.1, respectively,
has for a field. For OpenFlow 1.0, supported fields are reported as either ‘‘yes (exact
match only)’’ f or fields that do not support any bitwise masking or ‘‘yes (CIDR match
only)’’ f or fields that support CIDR masking. OpenFlow 1.1 supported fields report either
‘‘ yes (exact match only)’’ or simply ‘‘yes’’ f or fields that do support arbitrary masks.
These OpenFlow versions supported a fixed collection of fields that cannot be extended,
so many more fields are reported as ‘‘not supported.’’

OXM
NXM These rows report the OXM and NXM code points that correspond to a given field. Either

or both may be ‘‘none.’’

A field that has only an OXM code point is usually one that was standardized before it
was added to Open vSwitch. A field that has only an NXM code point is usually one that
is not yet standardized. When a field has both OXM and NXM code points, it usually
indicates that it was introduced as an Open vSwitch extension under the NXM code point,
then later standardized under the OXM code point. A field can have more than one OXM
code point if it was standardized in OpenFlow 1.4 or later and additionally introduced as
an official ONF extension for OpenFlow 1.3. (A field that has neither OXM nor NXM
code point is typically an obsolete field that is supported in some other form using OXM
or NXM.)

Each code point in these rows is described in the form ‘‘NAME (number) since Open-
Flow specand Open vSwitchversion,’’ e.g. ‘‘OXM_OF_ETH_TYPE (5) since Open-
Flow 1.2 and Open vSwitch 1.7.’’ F irst, NAME , which specifies a name for the code
point, starts with a prefix that designates a class and, in some cases, a vendor, as listed in
the following table:

Prefix Vendor Class

NXM_OF (none) 0x0000
NXM_NX (none) 0x0001
OXM_OF (none) 0x8000
OXM_OF_PKT_REG (none) 0x8001
NXOXM_ET 0x00002320 0xffff
ONFOXM_ET 0x4f4e4600 0xffff

Open vSwitch 2.7.90 10

ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

For more information on OXM/NXM classes and vendors, refer back toOpenFlow 1.2
underEvolution of OpenFlow Fields. The numberis the field number within the class
and vendor. The OpenFlow specis the version of OpenFlow that standardized the code
point. It is omitted for NXM code points because they are nonstandard. Theversionis the
version of Open vSwitch that first supported the code point.

Open vSwitch 2.7.90 11

ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

CONJUNCTIVE MATCH FIELDS
Summary:

Name Bytes Mask RW? Prereqs NXM/OXM Support

conj_id 4 no no none OVS 2.4+

An individual OpenFlow flow can match only a single value for each field. However, situations often arise
where one wants to match one of a set of values within a field or fields. For matching a single field against a
set, it is straightforward and efficient to add multiple flows to the flow table, one for each value in the set.
For example, one might use the following flows to send packets with IP source addressa, b, c, or d to the
OpenFlow controller:

ip,ip_src=a actions=controller
ip,ip_src=b actions=controller
ip,ip_src=c actions=controller
ip,ip_src=d actions=controller

Similarly, these flows send packets with IP destination addresse, f, g, or h to the OpenFlow controller:

ip,ip_dst=eactions=controller
ip,ip_dst=f actions=controller
ip,ip_dst=g actions=controller
ip,ip_dst=h actions=controller

Installing all of the above flows in a single flow table yields a disjunctive effect: a packet is sent to the con-
troller if ip_src ∈ { a,b,c,d} or ip_dst ∈ { e,f,g,h} (or both). (Pedantically, if both of the above sets of flows
are present in the flow table, they should have different priorities, because OpenFlow says that the results
are undefined when two flows with same priority can both match a single packet.)

Suppose, on the other hand, one wishes to match conjunctively, that is, to send a packet to the controller
only if both ip_src ∈ { a,b,c,d} and ip_dst ∈ { e,f,g,h}. This requires 4× 4 = 16 flows, one for each possible
pairing of ip_src andip_dst. That is acceptable for our small example, but it does not gracefully extend to
larger sets or greater numbers of dimensions.

The conjunction action is a solution for conjunctive matches that is built into Open vSwitch. Aconjunc-
tion action ties groups of individual OpenFlow flows into higher-level ‘ ‘conjunctive flows’’. Each group
corresponds to one dimension, and each flow within the group matches one possible value for the dimen-
sion. A packet that matches one flow from each group matches the conjunctive flow.

To implement a conjunctive flow with conjunction, assign the conjunctive flow a 32-bit id, which must be
unique within an OpenFlow table. Assign each of then ≥ 2 dimensions a unique number from 1 ton; the
ordering is unimportant. Add one flow to the OpenFlow flow table for each possible value of each dimen-
sion with conjunction(id, k/n) as the flow’s actions, wherek is the number assigned to the flow’s dimen-
sion. Together, these flows specify the conjunctive flow’s match condition. When the conjunctive match
condition is met, Open vSwitch looks up one more flow that specifies the conjunctive flow’s actions and
receives its statistics. This flow is found by settingconj_id to the specifiedid and then again searching the
flow table.

The following flows provide an example. Whenever the IP source is one of the values in the flows that
match on the IP source (dimension 1 of 2),and the IP destination is one of the values in the flows that
match on IP destination (dimension 2 of 2), Open vSwitch searches for a flow that matchesconj_id against
the conjunction ID (1234), finding the first flow listed below.

conj_id=1234 actions=controller
ip,ip_src=10.0.0.1 actions=conjunction(1234, 1/2)
ip,ip_src=10.0.0.4 actions=conjunction(1234, 1/2)
ip,ip_src=10.0.0.6 actions=conjunction(1234, 1/2)
ip,ip_src=10.0.0.7 actions=conjunction(1234, 1/2)
ip,ip_dst=10.0.0.2 actions=conjunction(1234, 2/2)

Open vSwitch 2.7.90 12

ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

ip,ip_dst=10.0.0.5 actions=conjunction(1234, 2/2)
ip,ip_dst=10.0.0.7 actions=conjunction(1234, 2/2)
ip,ip_dst=10.0.0.8 actions=conjunction(1234, 2/2)

Many subtleties exist:

• In the example above, every flow in a single dimension has the same form, that is, dimen-
sion 1 matches onip_src and dimension 2 onip_dst, but this is not a requirement. Differ-
ent flows within a dimension may match on different bits within a field (e.g. IP network
prefixes of different lengths, or TCP/UDP port ranges as bitwise matches), or even on
entirely different fields (e.g. to match packets for TCP source port 80 or TCP destination
port 80).

• The flows within a dimension can vary their matches across more than one field, e.g. to
match only specific pairs of IP source and destination addresses or L4 port numbers.

• A flow may have multiple conjunction actions, with differentid values. This is useful for
multiple conjunctive flows with overlapping sets. If one conjunctive flow matches packets
with both ip_src ∈ { a,b} and ip_dst ∈ { d,e} and a second conjunctive flow matches
ip_src ∈ { b,c} and ip_dst ∈ { f,g}, for example, then the flow that matchesip_src=b
would have two conjunction actions, one for each conjunctive flow. The order ofcon-
junction actions within a list of actions is not significant.

• A flow with conjunction actions may also includenote actions for annotations, but not
any other kind of actions. (They would not be useful because they would never be exe-
cuted.)

• All of the flows that constitute a conjunctive flow with a given id must have the same pri-
ority. (Flows with the sameid but different priorities are currently treated as different
conjunctive flows, that is, currentlyid values need only be unique within an OpenFlow ta-
ble at a given priority. This behavior isn’t guaranteed to stay the same in later releases, so
please useid values unique within an OpenFlow table.)

• Conjunctive flows must not overlap with each other, at a giv en priority, that is, any giv en
packet must be able to match at most one conjunctive flow at a giv en priority. Overlap-
ping conjunctive flows yield unpredictable results.

• Following a conjunctive flow match, the search for the flow with conj_id=id is done in
the same general-purpose way as other flow table searches, so one can use flows with
conj_id=id to act differently depending on circumstances. (One exception is that the
search for theconj_id=id flow itself ignores conjunctive flows, to avoid recursion.) If the
search withconj_id=id fails, Open vSwitch acts as if the conjunctive flow had not
matched at all, and continues searching the flow table for other matching flows.

• OpenFlow prerequisite checking occurs for the flow with conj_id=id in the same way as
any other flow, e.g. in an OpenFlow 1.1+ context, putting amod_nw_srcaction into the
example above would require adding anip match, like this:

conj_id=1234,ip actions=mod_nw_src:1.2.3.4,controller

• OpenFlow prerequisite checking also occurs for the individual flows that comprise a con-
junctive match in the same way as any other flow.

• The flows that constitute a conjunctive flow do not have useful statistics. They are never
updated with byte or packet counts, and so on. (For such a flow, therefore, the idle and
hard timeouts work much the same way.)

• Sometimes there is a choice of which flows include a particular match. For example, sup-
pose that we added an extra constraint to our example, to match onip_src ∈ { a,b,c,d}
and ip_dst ∈ { e,f,g,h} and tcp_dst = i. One way to implement this is to add the new

Open vSwitch 2.7.90 13

ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

constraint to theconj_id flow, like this:

conj_id=1234,tcp,tcp_dst=i actions=mod_nw_src:1.2.3.4,controller

but this is not recommendedbecause of the cost of the extra flow table lookup. Instead,
add the constraint to the individual flows, either in one of the dimensions or (slightly bet-
ter) all of them.

• A conjunctive match must have n ≥ 2 dimensions (otherwise a conjunctive match is not
necessary). Open vSwitch enforces this.

• Each dimension within a conjunctive match should ordinarily have more than one flow.
Open vSwitch does not enforce this.

Conjunction ID Field

Name: conj_id
Width: 32bits
Format: decimal
Masking: notmaskable
Prerequisites: none
Access: read-only
OpenFlow 1.0: notsupported
OpenFlow 1.1: notsupported
OXM: none
NXM: NXM_NX_CONJ_ID (37) since Open vSwitch 2.4

Used for conjunctive matching. See above for more information.

Open vSwitch 2.7.90 14

ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

TUNNEL FIELDS
Summary:

Name Bytes Mask RW? Prereqs NXM/OXM Support

tun_id akatunnel_id 8 yes yes none OF1.3+ and OVS 1.1+
tun_src 4 yes yes none OVS 2.0+
tun_dst 4 yes yes none OVS 2.0+
tun_ipv6_src 16 yes yes none OVS 2.5+
tun_ipv6_dst 16 yes yes none OVS 2.5+
tun_gbp_id 2 yes yes none OVS 2.4+
tun_gbp_flags 1 yes yes none OVS 2.4+
tun_metadata0 124 yes yes none OVS 2.5+
tun_metadata1 124 yes yes none OVS 2.5+
tun_metadata2 124 yes yes none OVS 2.5+
tun_metadata3 124 yes yes none OVS 2.5+
tun_metadata4 124 yes yes none OVS 2.5+
tun_metadata5 124 yes yes none OVS 2.5+
tun_metadata6 124 yes yes none OVS 2.5+
tun_metadata7 124 yes yes none OVS 2.5+
tun_metadata8 124 yes yes none OVS 2.5+
tun_metadata9 124 yes yes none OVS 2.5+
tun_metadata10 124 yes yes none OVS 2.5+
tun_metadata11 124 yes yes none OVS 2.5+
tun_metadata12 124 yes yes none OVS 2.5+
tun_metadata13 124 yes yes none OVS 2.5+
tun_metadata14 124 yes yes none OVS 2.5+
tun_metadata15 124 yes yes none OVS 2.5+
tun_metadata16 124 yes yes none OVS 2.5+
tun_metadata17 124 yes yes none OVS 2.5+
tun_metadata18 124 yes yes none OVS 2.5+
tun_metadata19 124 yes yes none OVS 2.5+
tun_metadata20 124 yes yes none OVS 2.5+
tun_metadata21 124 yes yes none OVS 2.5+
tun_metadata22 124 yes yes none OVS 2.5+
tun_metadata23 124 yes yes none OVS 2.5+
tun_metadata24 124 yes yes none OVS 2.5+
tun_metadata25 124 yes yes none OVS 2.5+
tun_metadata26 124 yes yes none OVS 2.5+
tun_metadata27 124 yes yes none OVS 2.5+
tun_metadata28 124 yes yes none OVS 2.5+
tun_metadata29 124 yes yes none OVS 2.5+
tun_metadata30 124 yes yes none OVS 2.5+
tun_metadata31 124 yes yes none OVS 2.5+
tun_metadata32 124 yes yes none OVS 2.5+
tun_metadata33 124 yes yes none OVS 2.5+
tun_metadata34 124 yes yes none OVS 2.5+
tun_metadata35 124 yes yes none OVS 2.5+
tun_metadata36 124 yes yes none OVS 2.5+
tun_metadata37 124 yes yes none OVS 2.5+
tun_metadata38 124 yes yes none OVS 2.5+
tun_metadata39 124 yes yes none OVS 2.5+
tun_metadata40 124 yes yes none OVS 2.5+
tun_metadata41 124 yes yes none OVS 2.5+
tun_metadata42 124 yes yes none OVS 2.5+

Open vSwitch 2.7.90 15

ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

tun_metadata43 124 yes yes none OVS 2.5+
tun_metadata44 124 yes yes none OVS 2.5+
tun_metadata45 124 yes yes none OVS 2.5+
tun_metadata46 124 yes yes none OVS 2.5+
tun_metadata47 124 yes yes none OVS 2.5+
tun_metadata48 124 yes yes none OVS 2.5+
tun_metadata49 124 yes yes none OVS 2.5+
tun_metadata50 124 yes yes none OVS 2.5+
tun_metadata51 124 yes yes none OVS 2.5+
tun_metadata52 124 yes yes none OVS 2.5+
tun_metadata53 124 yes yes none OVS 2.5+
tun_metadata54 124 yes yes none OVS 2.5+
tun_metadata55 124 yes yes none OVS 2.5+
tun_metadata56 124 yes yes none OVS 2.5+
tun_metadata57 124 yes yes none OVS 2.5+
tun_metadata58 124 yes yes none OVS 2.5+
tun_metadata59 124 yes yes none OVS 2.5+
tun_metadata60 124 yes yes none OVS 2.5+
tun_metadata61 124 yes yes none OVS 2.5+
tun_metadata62 124 yes yes none OVS 2.5+
tun_metadata63 124 yes yes none OVS 2.5+
tun_flags 2 (low 1 bits) yes yes none OVS 2.5+

The fields in this group relate to tunnels, which Open vSwitch supports in several forms (GRE, VXLAN,
and so on). Most of these fields do appear in the wire format of a packet, so they are data fields from that
point of view, but they are metadata from an OpenFlow flow table point of view because they do not appear
in packets that are forwarded to the controller or to ordinary (non-tunnel) output ports.

Open vSwitch supports a spectrum of usage models for mapping tunnels to OpenFlow ports:

‘‘ Port-based’’ tunnels
In this model, an OpenFlow port represents one tunnel: it matches a particular type of
tunnel traffic between two IP endpoints, with a particular tunnel key (if keys are in use).
In this situation,in_port suffices to distinguish one tunnel from another, so the tunnel
header fields have little importance for OpenFlow processing. (They are still populated
and may be used if it is convenient.) The tunnel header fields play no role in sending
packets out such an OpenFlow port, either, because the OpenFlow port itself fully speci-
fies the tunnel headers.

The following Open vSwitch commands create a bridgebr−int , add port tap0 to the
bridge as OpenFlow port 1, establish a port-based GRE tunnel between the local host and
remote IP 192.168.1.1 using GRE key 5001 as OpenFlow port 2, and arranges to forward
all traffic fromtap0 to the tunnel and vice versa:

ovs−vsctl add−br br−int
ovs−vsctl add−port br−int tap0 −− set interface tap0 ofport_request=1
ovs−vsctl add−port br−int gre0 −−

set interface gre0 ofport_request=2 type=gre \
options:remote_ip=192.168.1.1 options:key=5001

ovs−ofctl add−flow br−int in_port=1,actions=2
ovs−ofctl add−flow br−int in_port=2,actions=1

‘‘ Flow-based’’ tunnels
In this model, one OpenFlow port represents all possible tunnels of a given type with an
endpoint on the current host, for example, all GRE tunnels. In this situation,in_port only
indicates that traffic was received on the particular kind of tunnel. This is where the tun-
nel header fields are most important: they allow the OpenFlow tables to discriminate

Open vSwitch 2.7.90 16

ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

among tunnels based on their IP endpoints or keys. Tunnel header fields also determine
the IP endpoints and keys of packets sent out such a tunnel port.

The following Open vSwitch commands create a bridgebr−int , add port tap0 to the
bridge as OpenFlow port 1, establish a flow-based GRE tunnel port 3, and arranges to for-
ward all traffic fromtap0 to remote IP 192.168.1.1 over a GRE tunnel with key 5001 and
vice versa:

ovs−vsctl add−br br−int
ovs−vsctl add−port br−int tap0 −− set interface tap0 ofport_request=1
ovs−vsctl add−port br−int allgre −−

set interface gre0 ofport_request=3 type=gre \
options:remote_ip=flow options:key=flow

ovs−ofctl add−flow br−int \
’in_port=1 actions=set_tunnel:5001,set_field:192.168.1.1−>tun_dst,3’

ovs−ofctl add−flow br−int ’in_port=3,tun_src=192.168.1.1,tun_id=5001 actions=1’

Mixed models.
One may define both flow-based and port-based tunnels at the same time. For example, it
is valid and possibly useful to create and configure bothgre0 and allgre tunnel ports
described above.

Traffic is attributed on ingress to the most specific matching tunnel. For example,gre0 is
more specific thanallgre. Therefore, if both exist, thengre0 will be the ingress port for
any GRE traffic received from 192.168.1.1 with key 5001.

On egress, traffic may be directed to any appropriate tunnel port. If bothgre0 andallgre
are configured as already described, then the actions2 and set_tun-
nel:5001,set_field:192.168.1.1−>tun_dst,3send the same tunnel traffic.

Intermediate models.
Ports may be configured as partially flow-based. For example, one may define an Open-
Flow port that represents tunnels between a pair of endpoints but leaves the flow table to
discriminate on the flow key.

ovs−vswitchd.conf.db(5) describes all the details of tunnel configuration.

These fields do not have any prerequisites, which means that a flow may match on any or all of them, in any
combination.

These fields are zeros for packets that did not arrive on a tunnel.

Tunnel ID Field

Name: tun_id (akatunnel_id)
Width: 64bits
Format: hexadecimal
Masking: arbitrarybitwise masks
Prerequisites: none
Access: read/write
OpenFlow 1.0: notsupported
OpenFlow 1.1: notsupported
OXM: OXM_OF_TUNNEL_ID (38) since OpenFlow 1.3 and Open vSwitch 1.10
NXM: NXM_NX_TUN_ID (16) since Open vSwitch 1.1

Many kinds of tunnels support a tunnel ID:

• VXLAN and Geneve hav ea 24-bit virtual network identifier (VNI).

• LISP has a 24-bit instance ID.

Open vSwitch 2.7.90 17

ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

• GRE has an optional 32-bit key.

• STT has a 64-bit key.

When a packet is received from a tunnel, this field holds the tunnel ID in its least significant bits, zero-
extended to fit. This field is zero if the tunnel does not support an ID, or if no ID is in use for a tunnel type
that has an optional ID, or if an ID of zero received, or if the packet was not received over a tunnel.

When a packet is output to a tunnel port, the tunnel configuration determines whether the tunnel ID is taken
from this field or bound to a fixed value. See the earlier description of ‘‘port-based’’ and ‘‘flow-based’’ tun-
nels for more information.

The following diagram shows the origin of this field in a typical keyed GRE tunnel:

dst src type
48 48 16

0x800

Ethernet

. . . proto src dst
8

47

32 32
IPv4

. . . type key
16 16

0x6558

32
GRE

dst src type
48 48 16

Ethernet

. . .

Tunnel IPv4 Source Field

Name: tun_src
Width: 32bits
Format: IPv4
Masking: arbitrarybitwise masks
Prerequisites: none
Access: read/write
OpenFlow 1.0: notsupported
OpenFlow 1.1: notsupported
OXM: none
NXM: NXM_NX_TUN_IPV4_SRC (31) since Open vSwitch 2.0

When a packet is received from a tunnel, this field is the source address in the outer IP header of the tun-
neled packet. This field is zero if the packet was not received over a tunnel.

When a packet is output to a flow-based tunnel port, this field influences the IPv4 source address used to
send the packet. If it is zero, then the kernel chooses an appropriate IP address based using the routing ta-
ble.

The following diagram shows the origin of this field in a typical keyed GRE tunnel:

dst src type
48 48 16

0x800

Ethernet

. . . proto src dst
8

47

32 32
IPv4

. . . type key
16 16

0x6558

32
GRE

dst src type
48 48 16

Ethernet

. . .

Tunnel IPv4 Destination Field

Name: tun_dst
Width: 32bits
Format: IPv4
Masking: arbitrarybitwise masks
Prerequisites: none
Access: read/write
OpenFlow 1.0: notsupported
OpenFlow 1.1: notsupported
OXM: none
NXM: NXM_NX_TUN_IPV4_DST (32) since Open vSwitch 2.0

When a packet is received from a tunnel, this field is the destination address in the outer IP header of the
tunneled packet. This field is zero if the packet was not received over a tunnel.

Open vSwitch 2.7.90 18

ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

When a packet is output to a flow-based tunnel port, this field specifies the destination to which the tunnel
packet is sent.

The following diagram shows the origin of this field in a typical keyed GRE tunnel:

dst src type
48 48 16

0x800

Ethernet

. . . proto src dst
8

47

32 32
IPv4

. . . type key
16 16

0x6558

32
GRE

dst src type
48 48 16

Ethernet

. . .

Tunnel IPv6 Source Field

Name: tun_ipv6_src
Width: 128bits
Format: IPv6
Masking: arbitrarybitwise masks
Prerequisites: none
Access: read/write
OpenFlow 1.0: notsupported
OpenFlow 1.1: notsupported
OXM: none
NXM: NXM_NX_TUN_IPV6_SRC (109) since Open vSwitch 2.5

Similar totun_src, but for tunnels over IPv6.

Tunnel IPv6 Destination Field

Name: tun_ipv6_dst
Width: 128bits
Format: IPv6
Masking: arbitrarybitwise masks
Prerequisites: none
Access: read/write
OpenFlow 1.0: notsupported
OpenFlow 1.1: notsupported
OXM: none
NXM: NXM_NX_TUN_IPV6_DST (110) since Open vSwitch 2.5

Similar totun_dst, but for tunnels over IPv6.

VXLAN Group-Based Policy Fields
The VXLAN header is defined as follows [RFC 7348], where theI bit must be set to 1, unlabeled bits or
those labeledreserved must be set to 0, and Open vSwitch makes the VNI available viatun_id:

I
1 1 1 1 1 1 1 1

VXLAN flags

reserved VNI reserved
24 24 8

VXLAN Group-Based Policy [VXLAN Group Policy Option] adds new interpretations to existing bits in
the VXLAN header, reinterpreting it as follows, with changes highlighted:

D A
1 1 1 1 1 1 1 1

GBP flags

group policy ID VNI reserved
24 24 8

Open vSwitch makes GBP fields and flags available through the following fields. Only packets that arrive
over a VXLAN tunnel with the GBP extension enabled have these fields set. In other packets they are zero
on receive and ignored on transmit.

Open vSwitch 2.7.90 19

ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

VXLAN Group-Based Policy ID Field

Name: tun_gbp_id
Width: 16bits
Format: decimal
Masking: arbitrarybitwise masks
Prerequisites: none
Access: read/write
OpenFlow 1.0: notsupported
OpenFlow 1.1: notsupported
OXM: none
NXM: NXM_NX_TUN_GBP_ID (38) since Open vSwitch 2.4

For a packet tunneled over VXLAN with the Group-Based Policy (GBP) extension, this field represents the
GBP policy ID, as shown above.

VXLAN Group-Based Policy Flags Field

Name: tun_gbp_flags
Width: 8bits
Format: hexadecimal
Masking: arbitrarybitwise masks
Prerequisites: none
Access: read/write
OpenFlow 1.0: notsupported
OpenFlow 1.1: notsupported
OXM: none
NXM: NXM_NX_TUN_GBP_FLAGS (39) since Open vSwitch 2.4

For a packet tunneled over VXLAN with the Group-Based Policy (GBP) extension, this field represents the
GBP policy flags, as shown above.

The field has the format shown below:

D A
1 1 1 1 1 1 1 1

GBP Flags

Unlabeled bits are reserved and must be transmitted as 0. The VXLAN GBP draft defines the other bits’
meanings as:

D (Don’t Learn)
When set, this bit indicates that the egress tunnel endpoint must not learn the source
address of the encapsulated frame.

A (Applied)
When set, indicates that the group policy has already been applied to this packet. Devices
must not apply policies when the A bit is set.

Geneve Fields
These fields provide access to additional features in the Geneve tunneling protocol [Geneve]. Their names
are somewhat generic in the hope that the same fields could be reused for other protocols in the future; for
example, the NSH protocol [NSH] supports TLV options whose form is identical to that for Geneve
options.

Generic Tunnel Option 0 Field

Name: tun_metadata0
Width: 992bits (124 bytes)
Format: hexadecimal

Open vSwitch 2.7.90 20

ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

Masking: arbitrarybitwise masks
Prerequisites: none
Access: read/write
OpenFlow 1.0: notsupported
OpenFlow 1.1: notsupported
OXM: none
NXM: NXM_NX_TUN_METAD AT A0 (40) since Open vSwitch 2.5

The above information specifically covers generic tunnel option 0, but Open vSwitch supports 64 options,
numbered 0 through 63, whose NXM field numbers are 40 through 103.

These fields provide OpenFlow access to the generic type-length-value options defined by the Geneve tun-
neling protocol or other protocols with options in the same TLV format as Geneve options. Each of these
options has the following wire format:

class type res length
16 8 3

0

5
header

value
4×(length - 1) bytes

body

Taken together, theclassandtype in the option format mean that there are about 16 million distinct kinds
of TLV options, too many to giv e individual OXM code points. Thus, Open vSwitch requires the user to
define the TLV options of interest, by binding up to 64 TLV options to generic tunnel option NXM code
points. Each option may have up to 124 bytes in its body, the maximum allowed by the TLV format, but
bound options may total at most 252 bytes of body.

Open vSwitch extensions to the OpenFlow protocol bind TLV options to NXM code points. The
ovs−ofctl(8) program offers one way to use these extensions, e.g. to configure a mapping from a TLV
option withclass 0xffff, type 0, and a body length of 4 bytes:

ovs−ofctl add−tlv−map br0 "{class=0xffff,type=0,len=4}−>tun_metadata0"

Once a TLV option is properly bound, it can be accessed and modified like any other field, e.g. to send
packets that have value 1234 for the option described above to the controller:

ovs−ofctl add−flow br0 tun_metadata0=1234,actions=controller

An option not received or not bound is matched as all zeros.

Tunnel Flags Field

Name: tun_flags
Width: 16bits (only the least-significant 1 bits may be nonzero)
Format: tunnelflags
Masking: arbitrarybitwise masks
Prerequisites: none
Access: read/write
OpenFlow 1.0: notsupported
OpenFlow 1.1: notsupported
OXM: none
NXM: NXM_NX_TUN_FLAGS (104) since Open vSwitch 2.5

Flags indicating various aspects of the tunnel encapsulation.

Matches on this field are most conveniently written in terms of symbolic names (given in the diagram
below), each preceded by either+ for a flag that must be set, or− for a flag that must be unset, without any
other delimiters between the flags. Flags not mentioned are wildcarded. For example, tun_flags=+oam
matches only OAM packets. Matches can also be written asflags/mask, whereflagsandmaskare 16-bit
numbers in decimal or in hexadecimal prefixed by0x.

Open vSwitch 2.7.90 21

ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

Currently, only one flag is defined:

oam The tunnel protocol indicated that this is an OAM (Operations and Management) control
packet.

The switch may reject matches against unknown flags.

Newer versions of Open vSwitch may introduce additional flags with new meanings. It is therefore not rec-
ommended to use an exact match on this field since the behavior of these new flags is unknown and should
be ignored.

For non-tunneled packets, the value is 0.

Open vSwitch 2.7.90 22

ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

METAD AT A FIELDS
Summary:

Name Bytes Mask RW? Prereqs NXM/OXM Support

in_port 2 no yes none OVS 1.1+
in_port_oxm 4 no yes none OF 1.2+ and OVS 1.7+
skb_priority 4 no no none
pkt_mark 4 yes yes none OVS 2.0+
actset_output 4 no no none OF1.3+ and OVS 2.4+

These fields relate to the origin or treatment of a packet, but they are not extracted from the packet data
itself.

Ingress Port Field

Name: in_port
Width: 16bits
Format: OpenFlow 1.0 port
Masking: notmaskable
Prerequisites: none
Access: read/write
OpenFlow 1.0: yes(exact match only)
OpenFlow 1.1: yes(exact match only)
OXM: none
NXM: NXM_OF_IN_PORT (0) since Open vSwitch 1.1

The OpenFlow port on which the packet being processed arrived. This is a 16-bit field that holds an Open-
Flow 1.0 port number. For receiving a packet, the only values that appear in this field are:

1 through0xfeff (65,279), inclusive.
Conventional OpenFlow port numbers.

OFPP_LOCAL (0xfffe or 65,534).
The ‘‘local’’ port, which in Open vSwitch is always named the same as the bridge itself.
This represents a connection between the switch and the local TCP/IP stack. This port is
where an IP address is most commonly configured on an Open vSwitch switch.

OpenFlow does not require a switch to have a local port, but all existing versions of Open
vSwitch have always included a local port.Futur e Directions: Future versions of Open
vSwitch might be able to optionally omit the local port, if someone submits code to
implement such a feature.

OFPP_NONE(OpenFlow 1.0) orOFPP_ANY (OpenFlow 1.1+) (0xffff or 65,535).
OFPP_CONTROLLER (0xfffd or 65,533).

When a controller injects a packet into an OpenFlow switch with a ‘‘packet-out’’ request,
it can specify one of these ingress ports to indicate that the packet was generated inter-
nally rather than having been received on some port.

OpenFlow 1.0 specifiedOFPP_NONE for this purpose. Despite that, some controllers
used OFPP_CONTROLLER , and some switches only acceptedOFPP_CON-
TROLLER , so OpenFlow 1.0.2 required support for both ports. OpenFlow 1.1 and later
were more clearly drafted to allow only OFPP_CONTROLLER . For maximum compat-
ibility , Open vSwitch allows both ports with all OpenFlow versions.

Values not mentioned above will never appear when receiving a packet, including the following notable val-
ues:

0 Zero is not a valid OpenFlow port number.

OFPP_MAX (0xff00 or 65,280).
This value has only been clearly specified as a valid port number as of OpenFlow 1.3.3.
Before that, its status was unclear, and so Open vSwitch has never allowed OFPP_MAX
to be used as a port number, so packets will never be received on this port. (Other

Open vSwitch 2.7.90 23

ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

OpenFlow switches, of course, might use it.)

OFPP_UNSET(0xfff7 or 65,527)
OFPP_IN_PORT (0xfff8 or 65,528)
OFPP_TABLE (0xfff9 or 65,529)
OFPP_NORMAL (0xfffa or 65,530)
OFPP_FLOOD (0xfffb or 65,531)
OFPP_ALL (0xfffc or 65,532)

These port numbers are used only in output actions and never appear as ingress ports.

Most of these port numbers were defined in OpenFlow 1.0, but OFPP_UNSETwas only
introduced in OpenFlow 1.5.

Values that will never appear when receiving a packet may still be matched against in the flow table. There
are still circumstances in which those flows can be matched:

• Theresubmit Open vSwitch extension action allows a flow table lookup with an arbitrary
ingress port.

• An action that modifies the ingress port field (see below), such as e.g.load or set_field,
followed by an action or instruction that performs another flow table lookup, such as
resubmit or goto_table.

This field is heavily used for matching in OpenFlow tables, but for packet egress, it has only very limited
roles:

• OpenFlow requires suppressing output actions toin_port . That is, the following two
flows both drop all packets that arrive on port 1:

in_port=1,actions=1
in_port=1,actions=drop

(This behavior is occasionally useful for flooding to a subset of ports. Specifying
actions=1,2,3,4, for example, outputs to ports 1, 2, 3, and 4, omitting the ingress port.)

• OpenFlow has a special portOFPP_IN_PORT (with value 0xfff8) that outputs to the
ingress port. For example, in a switch that has four ports numbered 1 through 4,
actions=1,2,3,4,in_portoutputs to ports 1, 2, 3, and 4, including the ingress port.

Because the ingress port field has so little influence on packet processing, it does not ordinarily make sense
to modify the ingress port field. The field is writable only to support the occasional use case where the
ingress port’s roles in packet egress, described above, become troublesome. For example,
actions=load:0−>NXM_OF_IN_PORT[],output:123will output to port 123 regardless of whether it is in
the ingress port. If the ingress port is important, then one may save and restore it on the stack:

actions=push:NXM_OF_IN_PORT[],load:0−>NXM_OF_IN_PORT[],output:123,pop:NXM_OF_IN_PORT[]

or, in Open vSwitch 2.7 or later, use thecloneaction to save and restore it:

actions=clone(load:0−>NXM_OF_IN_PORT[],output:123)

The ability to modify the ingress port is an Open vSwitch extension to OpenFlow.

OXM I ngress Port Field

Name: in_port_oxm
Width: 32bits
Format: OpenFlow 1.1+ port
Masking: notmaskable
Prerequisites: none
Access: read/write

Open vSwitch 2.7.90 24

ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

OpenFlow 1.0: notsupported
OpenFlow 1.1: yes(exact match only)
OXM: OXM_OF_IN_PORT (0) since OpenFlow 1.2 and Open vSwitch 1.7
NXM: none

OpenFlow 1.1 and later use a 32-bit port number, so this field supplies a 32-bit view of the ingress port.
Current versions of Open vSwitch support only a 16-bit range of ports:

• OpenFlow 1.0 ports0x0000to 0xfeff, inclusive, map to OpenFlow 1.1 port numbers with
the same values.

• OpenFlow 1.0 ports 0xff00 to 0xffff , inclusive, map to OpenFlow 1.1 port numbers
0xffffff00 to 0xffffffff .

• OpenFlow 1.1 ports0x0000ff00to 0xfffffeff are not mapped and not supported.

in_port andin_port_oxm are two views of the same information, so all of the comments onin_port apply
to in_port_oxm too. Modifying in_port changesin_port_oxm, and vice versa.

Settingin_port_oxm to an unsupported value yields unspecified behavior.

Output Queue Field

Name: skb_priority
Width: 32bits
Format: hexadecimal
Masking: notmaskable
Prerequisites: none
Access: read-only
OpenFlow 1.0: notsupported
OpenFlow 1.1: notsupported
OXM: none
NXM: none

Futur e Directions: Open vSwitch implements the output queue as a field, but does not currently expose it
through OXM or NXM for matching purposes. If this turns out to be a useful feature, it could be imple-
mented in future versions. Only theset_queue, enqueue, and pop_queueactions currently influence the
output queue.

This field influences how packets in the flow will be queued, for quality of service (QoS) purposes, when
they egress the switch. Its range of meaningful values, and their meanings, varies greatly from one Open-
Flow implementation to another. Even within a single implementation, there is no guarantee that all Open-
Flow ports have the same queues configured or that all OpenFlow ports in an implementation can be config-
ured the same way queue-wise.

Configuring queues on OpenFlow is not well standardized. On Linux, Open vSwitch supports queue config-
uration via OVSDB, specifically theQoS and Queue tables (seeovs−vswitchd.conf.db(5)for details).
Ports of Open vSwitch to other platforms might require queue configuration through some separate proto-
col (such as a CLI). Even on Linux, Open vSwitch exposes only a fraction of the kernel’s queuing features
through OVSDB, so advanced or unusual uses might require use of separate utilities (e.g.tc). OpenFlow
switches other than Open vSwitch might use OF-CONFIG or any of the configuration methods mentioned
above. Finally, some OpenFlow switches have a fixed number of fixed-function queues (e.g. eight queues
with strictly defined priorities) and others do not support any control over queuing.

The only output queue that all OpenFlow implementations must support is zero, to identify a default queue,
whose properties are implementation-defined. Outputting a packet to a queue that does not exist on the out-
put port yields unpredictable behavior: among the possibilities are that the packet might be dropped or
transmitted with a very high or very low priority.

OpenFlow 1.0 only allowed output queues to be specified as part of anenqueueaction that specified both a
queue and an output port. That is, OpenFlow 1.0 treats the queue as an argument to an action, not as a field.

To increase flexibility , OpenFlow 1.1 added an action to set the output queue. This model was carried

Open vSwitch 2.7.90 25

ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

forward, without change, through OpenFlow 1.5.

Open vSwitch implements the native queuing model of each OpenFlow version it supports. Open vSwitch
also includes an extension for setting the output queue as an action in OpenFlow 1.0.

When a packet ingresses into an OpenFlow switch, the output queue is ordinarily set to 0, indicating the
default queue. However, Open vSwitch supports various ways to forward a packet from one OpenFlow
switch to another within a single host. In these cases, Open vSwitch maintains the output queue across the
forwarding step. For example:

• A hop across an Open vSwitch ‘‘patch port’’ (which does not actually involve queuing)
preserves the output queue.

• When a flow sets the output queue then outputs to an OpenFlow tunnel port, the encapsu-
lation preserves the output queue. If the kernel TCP/IP stack routes the encapsulated
packet directly to a physical interface, then that output honors the output queue. Alterna-
tively, if the kernel routes the encapsulated packet to another Open vSwitch bridge, then
the output queue set previously becomes the initial output queue on ingress to the second
bridge and will thus be used for further output actions (unless overridden by a new ‘‘set
queue’’ action).

(This description reflects the current behavior of Open vSwitch on Linux. This behavior
relies on details of the Linux TCP/IP stack. It could be difficult to make ports to other
operating systems behave the same way.)

Packet Mark Field

Name: pkt_mark
Width: 32bits
Format: hexadecimal
Masking: arbitrarybitwise masks
Prerequisites: none
Access: read/write
OpenFlow 1.0: notsupported
OpenFlow 1.1: notsupported
OXM: none
NXM: NXM_NX_PKT_MARK (33) since Open vSwitch 2.0

Packet mark comes to Open vSwitch from the Linux kernel, in which thesk_buff data structure that repre-
sents a packet contains a 32-bit member namedskb_mark. The value ofskb_mark propagates along with
the packet it accompanies wherever the packet goes in the kernel. It has no predefined semantics but various
kernel-user interfaces can set and match on it, which makes it suitable for ‘‘marking’’ packets at one point
in their handling and then acting on the mark later. With iptables, for example, one can mark some traffic
specially at ingress and then handle that traffic differently at egress based on the marked value.

Packet mark is an attempt at a generalization of theskb_mark concept beyond Linux, at least through more
generic naming. Like skb_priority , packet mark is preserved across forwarding steps within a machine.
Unlike skb_priority , packet mark has no direct effect on packet forwarding: the value set in packet mark
does not matter unless some later OpenFlow table or switch matches on packet mark, or unless the packet
passes through some other kernel subsystem that has been configured to interpret packet mark in specific
ways, e.g. throughiptablesconfiguration mentioned above.

Preserving packet mark across kernel forwarding steps relies heavily on kernel support, which ports to non-
Linux operating systems may not have. Reg ardless of operating system support, Open vSwitch supports
packet mark within a single bridge and across patch ports.

The value of packet mark when a packet ingresses into the first Open vSwich bridge is typically zero, but it
could be nonzero if its value was previously set by some kernel subsystem.

Action Set Output Port Field

Open vSwitch 2.7.90 26

ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

Name: actset_output
Width: 32bits
Format: OpenFlow 1.1+ port
Masking: notmaskable
Prerequisites: none
Access: read-only
OpenFlow 1.0: notsupported
OpenFlow 1.1: notsupported
OXM: ONFOXM_ET_ACTSET_OUTPUT (43) since OpenFlow 1.3 and Open vSwitch 2.4;

OXM_OF_ACTSET_OUTPUT (43) since OpenFlow 1.5 and Open vSwitch 2.4
NXM: none

Holds the output port currently in the OpenFlow action set (i.e. from anoutput action within a
write_actions instruction). Its value is an OpenFlow port number. If there is no output port in the Open-
Flow action set, or if the output port will be ignored (e.g. because there is an output group in the OpenFlow
action set), then the value will beOFPP_UNSET.

Open vSwitch allows any table to match this field. OpenFlow, howev er, only requires this field to be match-
able from within an OpenFlow egress table (a feature that Open vSwitch does not yet implement).

Open vSwitch 2.7.90 27

ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

CONNECTION TRACKING FIELDS
Summary:

Name Bytes Mask RW? Prereqs NXM/OXM Support

ct_state 4 yes no none OVS 2.5+
ct_zone 2 no no none OVS 2.5+
ct_mark 4 yes yes none OVS 2.5+
ct_label 16 yes yes none OVS 2.5+
ct_nw_src 4 yes no CT OVS 2.8+
ct_nw_dst 4 yes no CT OVS 2.8+
ct_ipv6_src 16 yes no CT OVS 2.8+
ct_ipv6_dst 16 yes no CT OVS 2.8+
ct_nw_proto 1 no no CT OVS 2.8+
ct_tp_src 2 yes no CT OVS 2.8+
ct_tp_dst 2 yes no CT OVS 2.8+

Open vSwitch 2.5 and later support ‘‘connection tracking,’’ w hich allows bidirectional streams of packets to
be statefully grouped into connections. Open vSwitch connection tracking, for example, identifies the pat-
terns of TCP packets that indicates a successfully initiated connection, as well as those that indicate that a
connection has been torn down. Open vSwitch connection tracking can also identify related connections,
such as FTP data connections spawned from FTP control connections.

An individual packet passing through the pipeline may be in one of two states, ‘‘untracked’’ or ‘ ‘tracked,’’
which may be distinguished via the ‘‘trk’ ’ fl ag in ct_state. A packet is untracked at the beginning of the
Open vSwitch pipeline and continues to be untracked until the pipeline invokes thect action. The connec-
tion tracking fields are all zeroes in an untracked packet. When a flow in the Open vSwitch pipeline invokes
the ct action, the action initializes the connection tracking fields and the packet becomestracked for the
remainder of its processing.

The connection tracker stores connection state in an internal table, but it only adds a new entry to this table
when act action for a new connection invokes ct with thecommit parameter. For a given connection, when
a pipeline has executedct, but not yet withcommit, the connection is said to beuncommitted. State for an
uncommitted connection is ephemeral and does not persist past the end of the pipeline, so some features are
only available to committed connections. A connection would typically be left uncommitted as a way to
drop its packets.

Connection tracking is an Open vSwitch extension to OpenFlow.

Connection Tracking State Field

Name: ct_state
Width: 32bits
Format: ctstate
Masking: arbitrarybitwise masks
Prerequisites: none
Access: read-only
OpenFlow 1.0: notsupported
OpenFlow 1.1: notsupported
OXM: none
NXM: NXM_NX_CT_STATE (105) since Open vSwitch 2.5

This field holds several flags that can be used to determine the state of the connection to which the packet
belongs.

Matches on this field are most conveniently written in terms of symbolic names (listed below), each pre-
ceded by either+ for a flag that must be set, or− for a flag that must be unset, without any other delimiters
between the flags. Flags not mentioned are wildcarded. For example,tcp,ct_state=+trk−newmatches TCP
packets that have been run through the connection tracker and do not establish a new connection. Matches
can also be written asflags/mask, whereflagsandmaskare 32-bit numbers in decimal or in hexadecimal
prefixed by0x.

Open vSwitch 2.7.90 28

ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

The following flags are defined:

new (0x01)
A new connection. Set to 1 if this is an uncommitted connection.

est(0x02)
Part of an existing connection. Set to 1 if this is a committed connection.

rel (0x04)
Related to an existing connection, e.g. an ICMP ‘‘destination unreachable’’ message or an
FTP data connections. This flag will only be 1 if the connection to which this one is
related is committed.

Connections identified asrel are separate from the originating connection and must be
committed separately. All packets for a related connection will have the rel flag set, not
just the initial packet.

rp l (0x08)
This packet is in the reply direction, meaning that it is in the opposite direction from the
packet that initiated the connection. This flag will only be 1 if the connection is commit-
ted.

inv (0x10)
The state is invalid, meaning that the connection tracker couldn’t identify the connection.
This flag is a catch-all for problems in the connection or the connection tracker, such as:

• L3/L4 protocol handler is not loaded/unavailable. With the Linux kernel data-
path, this may mean that thenf_conntrack_ipv4 or nf_conntrack_ipv6 mod-
ules are not loaded.

• L3/L4 protocol handler determines that the packet is malformed.

• Packets are unexpected length for protocol.

trk (0x20)
This packet is tracked, meaning that it has previously traversed the connection tracker. If
this flag is not set, then no other flags will be set. If this flag is set, then the packet is
tracked and other flags may also be set.

snat (0x40)
This packet was transformed by source address/port translation by a precedingct action.
Open vSwitch 2.6 added this flag.

dnat (0x80)
This packet was transformed by destination address/port translation by a precedingct
action. Open vSwitch 2.6 added this flag.

There are additional constraints on these flags, listed in decreasing order of precedence below:

1. If trk is unset, no other flags are set.

2. If trk is set, one or more other flags may be set.

3. If inv is set, only thetrk flag is also set.

4. newandestare mutually exclusive.

5. newandrp l are mutually exclusive.

6. rel may be set in conjunction with any other flags.

Future versions of Open vSwitch may define new flags.

Connection Tracking Zone Field

Name: ct_zone
Width: 16bits

Open vSwitch 2.7.90 29

ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

Format: hexadecimal
Masking: notmaskable
Prerequisites: none
Access: read-only
OpenFlow 1.0: notsupported
OpenFlow 1.1: notsupported
OXM: none
NXM: NXM_NX_CT_ZONE (106) since Open vSwitch 2.5

A connection tracking zone, the zone value passed to the most recentct action. Each zone is an independent
connection tracking context, so tracking the same packet in multiple contexts requires using thect action
multiple times.

Connection Tracking Mark Field

Name: ct_mark
Width: 32bits
Format: hexadecimal
Masking: arbitrarybitwise masks
Prerequisites: none
Access: read/write
OpenFlow 1.0: notsupported
OpenFlow 1.1: notsupported
OXM: none
NXM: NXM_NX_CT_MARK (107) since Open vSwitch 2.5

The metadata committed, by an action within theexecparameter to thect action, to the connection to
which the current packet belongs.

Connection Tracking Label Field

Name: ct_label
Width: 128bits
Format: hexadecimal
Masking: arbitrarybitwise masks
Prerequisites: none
Access: read/write
OpenFlow 1.0: notsupported
OpenFlow 1.1: notsupported
OXM: none
NXM: NXM_NX_CT_LABEL (108) since Open vSwitch 2.5

The label committed, by an action within theexecparameter to thect action, to the connection to which the
current packet belongs.

Open vSwitch 2.8 introduced the matching support for connection tracker original direction 5-tuple fields.

For non-committed non-related connections the conntrack original direction tuple fields always have the
same values as the corresponding headers in the packet itself. For any other packets of a committed connec-
tion the conntrack original direction tuple fields reflect the values from that initial non-committed non-
related packet, and thus may be different from the actual packet headers, as the actual packet headers may
be in reverse direction (for reply packets), transformed by NAT (when \fBnat\fR option was applied to the
connection), or be of different protocol (i.e., when an ICMP response is sent to an UDP packet). In case of
related connections, e.g., an FTP data connection, the original direction tuple contains the original direction
headers from the master connection, e.g., an FTP control connection.

The following fields are populated by the ct action, and require a match to a valid connection tracking state
as a prerequisite, in addition to the IP or IPv6 ethertype match. Examples of valid connection tracking state
matches include \fBct_state=+new\fR, \fBct_state=+est\fR, \fBct_state=+rel\fR, and \fBct_state=+trk-
inv\fR.

Open vSwitch 2.7.90 30

ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

Connection Tracking Original Direction IPv4 Source Address Field

Name: ct_nw_src
Width: 32bits
Format: IPv4
Masking: arbitrarybitwise masks
Prerequisites: CT
Access: read-only
OpenFlow 1.0: notsupported
OpenFlow 1.1: notsupported
OXM: none
NXM: NXM_NX_CT_NW_SRC (120) since Open vSwitch 2.8

Matches IPv4 conntrack original direction tuple source address. See the paragraphs above for general
description to the conntrack original direction tuple. Introduced in Open vSwitch 2.8.

Connection Tracking Original Direction IPv4 Destination Address Field

Name: ct_nw_dst
Width: 32bits
Format: IPv4
Masking: arbitrarybitwise masks
Prerequisites: CT
Access: read-only
OpenFlow 1.0: notsupported
OpenFlow 1.1: notsupported
OXM: none
NXM: NXM_NX_CT_NW_DST (121) since Open vSwitch 2.8

Matches IPv4 conntrack original direction tuple destination address. See the paragraphs above for general
description to the conntrack original direction tuple. Introduced in Open vSwitch 2.8.

Connection Tracking Original Direction IPv6 Source Address Field

Name: ct_ipv6_src
Width: 128bits
Format: IPv6
Masking: arbitrarybitwise masks
Prerequisites: CT
Access: read-only
OpenFlow 1.0: notsupported
OpenFlow 1.1: notsupported
OXM: none
NXM: NXM_NX_CT_IPV6_SRC (122) since Open vSwitch 2.8

Matches IPv6 conntrack original direction tuple source address. See the paragraphs above for general
description to the conntrack original direction tuple. Introduced in Open vSwitch 2.8.

Connection Tracking Original Direction IPv6 Destination Address Field

Name: ct_ipv6_dst
Width: 128bits
Format: IPv6
Masking: arbitrarybitwise masks
Prerequisites: CT
Access: read-only
OpenFlow 1.0: notsupported
OpenFlow 1.1: notsupported
OXM: none

Open vSwitch 2.7.90 31

ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

NXM: NXM_NX_CT_IPV6_DST (123) since Open vSwitch 2.8

Matches IPv6 conntrack original direction tuple destination address. See the paragraphs above for general
description to the conntrack original direction tuple. Introduced in Open vSwitch 2.8.

Connection Tracking Original Direction IP Protocol Field

Name: ct_nw_proto
Width: 8bits
Format: decimal
Masking: notmaskable
Prerequisites: CT
Access: read-only
OpenFlow 1.0: notsupported
OpenFlow 1.1: notsupported
OXM: none
NXM: NXM_NX_CT_NW_PROT O (119) since Open vSwitch 2.8

Matches conntrack original direction tuple IP protocol type, which is specified as a decimal number
between 0 and 255, inclusive (e.g. 1 to match ICMP packets or 6 to match TCP packets). In case of, for
example, an ICMP response to an UDP packet, this may be different from the IP protocol type of the packet
itself. See the paragraphs above for general description to the conntrack original direction tuple. Introduced
in Open vSwitch 2.8.

Connection Tracking Original Direction Transport Layer Source Port Field

Name: ct_tp_src
Width: 16bits
Format: decimal
Masking: arbitrarybitwise masks
Prerequisites: CT
Access: read-only
OpenFlow 1.0: notsupported
OpenFlow 1.1: notsupported
OXM: none
NXM: NXM_NX_CT_TP_SRC (124) since Open vSwitch 2.8

Bitwise match on the conntrack original direction tuple transport source, whenMFF_CT_NW_PROT O
has value 6 for TCP, 17 for UDP, or 132 for SCTP. WhenMFF_CT_NW_PROT O has value 1 for ICMP,
or 58 for ICMPv6, the lower 8 bits ofMFF_CT_TP_SRC matches the conntrack original direction ICMP
type. See the paragraphs above for general description to the conntrack original direction tuple. Introduced
in Open vSwitch 2.8.

Connection Tracking Original Direction Transport Layer Source Port Field

Name: ct_tp_dst
Width: 16bits
Format: decimal
Masking: arbitrarybitwise masks
Prerequisites: CT
Access: read-only
OpenFlow 1.0: notsupported
OpenFlow 1.1: notsupported
OXM: none
NXM: NXM_NX_CT_TP_DST (125) since Open vSwitch 2.8

Bitwise match on the conntrack original direction tuple transport destination port, when
MFF_CT_NW_PROT O has value 6 for TCP, 17 for UDP, or 132 for SCTP. When
MFF_CT_NW_PROT O has value 1 for ICMP, or 58 for ICMPv6, the lower 8 bits ofMFF_CT_TP_DST
matches the conntrack original direction ICMP code. See the paragraphs above for general description to

Open vSwitch 2.7.90 32

ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

the conntrack original direction tuple. Introduced in Open vSwitch 2.8.

Open vSwitch 2.7.90 33

ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

REGISTER FIELDS
Summary:

Name Bytes Mask RW? Prereqs NXM/OXM Support

metadata 8 yes yes none OF1.2+ and OVS 1.8+
reg0 4 yes yes none OVS 1.1+
reg1 4 yes yes none OVS 1.1+
reg2 4 yes yes none OVS 1.1+
reg3 4 yes yes none OVS 1.1+
reg4 4 yes yes none OVS 1.3+
reg5 4 yes yes none OVS 1.7+
reg6 4 yes yes none OVS 1.7+
reg7 4 yes yes none OVS 1.7+
reg8 4 yes yes none OVS 2.6+
reg9 4 yes yes none OVS 2.6+
reg10 4 yes yes none OVS 2.6+
reg11 4 yes yes none OVS 2.6+
reg12 4 yes yes none OVS 2.6+
reg13 4 yes yes none OVS 2.6+
reg14 4 yes yes none OVS 2.6+
reg15 4 yes yes none OVS 2.6+
xreg0 8 yes yes none OF1.3+ and OVS 2.4+
xreg1 8 yes yes none OF1.3+ and OVS 2.4+
xreg2 8 yes yes none OF1.3+ and OVS 2.4+
xreg3 8 yes yes none OF1.3+ and OVS 2.4+
xreg4 8 yes yes none OF1.3+ and OVS 2.4+
xreg5 8 yes yes none OF1.3+ and OVS 2.4+
xreg6 8 yes yes none OF1.3+ and OVS 2.4+
xreg7 8 yes yes none OF1.3+ and OVS 2.4+
xxreg0 16 yes yes none OVS 2.6+
xxreg1 16 yes yes none OVS 2.6+
xxreg2 16 yes yes none OVS 2.6+
xxreg3 16 yes yes none OVS 2.6+

These fields give an OpenFlow switch space for temporary storage while the pipeline is running. Whereas
metadata fields can have a meaningful initial value and can persist across some hops across OpenFlow
switches, registers are always initially 0 and their values never persist across inter-switch hops (not even
across patch ports).

OpenFlow Metadata Field

Name: metadata
Width: 64bits
Format: hexadecimal
Masking: arbitrarybitwise masks
Prerequisites: none
Access: read/write
OpenFlow 1.0: notsupported
OpenFlow 1.1: yes
OXM: OXM_OF_METAD AT A (2) since OpenFlow 1.2 and Open vSwitch 1.8
NXM: none

This field is the oldest standardized OpenFlow register field, introduced in OpenFlow 1.1. It was introduced
to model the limited number of user-defined bits that some ASIC-based switches can carry through their
pipelines. Because of hardware limitations, OpenFlow allows switches to support writing and masking only
an implementation-defined subset of bits, even no bits at all. The Open vSwitch software switch always
supports all 64 bits, but of course an Open vSwitch port to an ASIC would have the same restriction as the
ASIC itself.

Open vSwitch 2.7.90 34

ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

This field has an OXM code point, but OpenFlow 1.4 and earlier allow it to be modified only with a special-
ized instruction, not with a ‘‘set-field’’ action. OpenFlow 1.5 removes this restriction. Open vSwitch does
not enforce this restriction, regardless of OpenFlow version.

Register 0 Field

Name: reg0
Width: 32bits
Format: hexadecimal
Masking: arbitrarybitwise masks
Prerequisites: none
Access: read/write
OpenFlow 1.0: notsupported
OpenFlow 1.1: notsupported
OXM: none
NXM: NXM_NX_REG0 (0) since Open vSwitch 1.1

This is the first of several Open vSwitch registers, all of which have the same properties. Open vSwitch 1.1
introduced registers 0, 1, 2, and 3, version 1.3 added register 4, version 1.7 added registers 5, 6, and 7, and
version 2.6 added registers 8 through 15.

Extended Register 0 Field

Name: xreg0
Width: 64bits
Format: hexadecimal
Masking: arbitrarybitwise masks
Prerequisites: none
Access: read/write
OpenFlow 1.0: notsupported
OpenFlow 1.1: notsupported
OXM: OXM_OF_PKT_REG0 (0) since OpenFlow 1.3 and Open vSwitch 2.4
NXM: none

This is the first of the registers introduced in OpenFlow 1.5. OpenFlow 1.5 calls these fields just the
‘‘ packet registers,’’ but Open vSwitch already had 32-bit registers by that name, so Open vSwitch uses the
name ‘‘extended registers’’ in an attempt to reduce confusion. The standard allows for up to 128 registers,
each 64 bits wide, but Open vSwitch only implements 4 (in versions 2.4 and 2.5) or 8 (in version 2.6 and
later).

Each of the 64-bit extended registers overlays two of the 32-bit registers:xreg0 overlays reg0 and reg1,
with reg0 supplying the most-significant bits ofxreg0 andreg1 the least-significant. Similarly, xreg1 over-
laysreg2andreg3, and so on.

The OpenFlow specification says, ‘‘In most cases, the packet registers can not be matched in tables, i.e.
they usually can not be used in the flow entry match structure’’ [OpenFlow 1.5, section 7.2.3.10], but there
is no reason for a software switch to impose such a restriction, and Open vSwitch does not.

Double-Extended Register 0 Field

Name: xxreg0
Width: 128bits
Format: hexadecimal
Masking: arbitrarybitwise masks
Prerequisites: none
Access: read/write
OpenFlow 1.0: notsupported
OpenFlow 1.1: notsupported
OXM: none

Open vSwitch 2.7.90 35

ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

NXM: NXM_NX_XXREG0 (111) since Open vSwitch 2.6

This is the first of the double-extended registers introduce in Open vSwitch 2.6. Each of the 128-bit
extended registers overlays four of the 32-bit registers:xxreg0 overlays reg0 throughreg3, with reg0 sup-
plying the most-significant bits ofxxreg0 and reg3 the least-significant.xxreg1 similarly overlays reg4
throughreg7, and so on.

Open vSwitch 2.7.90 36

ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

LAYER 2 (ETHERNET) FIELDS
Summary:

Name Bytes Mask RW? Prereqs NXM/OXM Support

eth_srcakadl_src 6 yes yes none OF1.2+ and OVS 1.1+
eth_dstakadl_dst 6 yes yes none OF1.2+ and OVS 1.1+
eth_typeakadl_type 2 no no none OF1.2+ and OVS 1.1+

Ethernet is the only layer−2 protocol that Open vSwitch supports. As with most software, Open vSwitch
and OpenFlow reg ard an Ethernet frame to begin with the 14-byte header and end with the final byte of the
payload; that is, the frame check sequence is not considered part of the frame.

Ethernet Source Field

Name: eth_src(akadl_src)
Width: 48bits
Format: Ethernet
Masking: arbitrarybitwise masks
Prerequisites: none
Access: read/write
OpenFlow 1.0: yes(exact match only)
OpenFlow 1.1: yes
OXM: OXM_OF_ETH_SRC (4) since OpenFlow 1.2 and Open vSwitch 1.7
NXM: NXM_OF_ETH_SRC (2) since Open vSwitch 1.1

The Ethernet source address:

dst src type
48 48 16

Ethernet

. . .

Ethernet Destination Field

Name: eth_dst(akadl_dst)
Width: 48bits
Format: Ethernet
Masking: arbitrarybitwise masks
Prerequisites: none
Access: read/write
OpenFlow 1.0: yes(exact match only)
OpenFlow 1.1: yes
OXM: OXM_OF_ETH_DST (3) since OpenFlow 1.2 and Open vSwitch 1.7
NXM: NXM_OF_ETH_DST (1) since Open vSwitch 1.1

The Ethernet destination address:

dst src type
48 48 16

Ethernet

. . .

Open vSwitch 1.8 and later support arbitrary masks for source and/or destination. Earlier versions only sup-
port masking the destination with the following masks:

01:00:00:00:00:00
Match only the multicast bit. Thus,dl_dst=01:00:00:00:00:00/01:00:00:00:00:00
matches all multicast (including broadcast) Ethernet packets, and
dl_dst=00:00:00:00:00:00/01:00:00:00:00:00matches all unicast Ethernet packets.

Open vSwitch 2.7.90 37

ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

fe:ff:ff:ff:ff:ff
Match all bits except the multicast bit. This is probably not useful.

ff:ff:ff:ff:ff:ff
Exact match (equivalent to omitting the mask).

00:00:00:00:00:00
Wildcard all bits (equivalent todl_dst=*).

Ethernet Type Field

Name: eth_type(akadl_type)
Width: 16bits
Format: hexadecimal
Masking: notmaskable
Prerequisites: none
Access: read-only
OpenFlow 1.0: yes(exact match only)
OpenFlow 1.1: yes(exact match only)
OXM: OXM_OF_ETH_TYPE (5) since OpenFlow 1.2 and Open vSwitch 1.7
NXM: NXM_OF_ETH_TYPE (3) since Open vSwitch 1.1

The most commonly seen Ethernet frames today use a format called ‘‘Ethernet II,’’ i n which the last two
bytes of the Ethernet header specify the Ethertype. For such a frame, this field is copied from those bytes of
the header, like so:

dst src type
48 48 16

≥0x600

Ethernet

. . .

Every Ethernet type has a value 0x600 (1,536) or greater. When the last two bytes of the Ethernet header
have a value too small to be an Ethernet type, then the value found there is the total length of the frame in
bytes, excluding the Ethernet header. An 802.2 LLC header typically follows the Ethernet header. Open-
Flow and Open vSwitch only support LLC headers with DSAP and SSAP0xaa and control byte0x03,
which indicate that a SNAP header follows the LLC header. In turn, OpenFlow and Open vSwitch only
support a SNAP header with organization0x000000. In such a case, this field is copied from the type field
in the SNAP header, like this:

dst src type
48 48 16

<0x600

Ethernet

DSAP SSAP cntl
8

0xaa

8

0xaa

8

0x03

LLC

org type
24

0x000000

16

≥0x600

SNAP

. . .

When an 802.1Q header is inserted after the Ethernet source and destination, this field is populated with the
encapsulated Ethertype, not the 802.1Q Ethertype. With an Ethernet II inner frame, the result looks like
this:

dst src
48 48

Ethernet

TPID TCI
16

0x8100

16
802.1Q

type
16

≥0x600

Ethertype

. . .

LLC and SNAP encapsulation look like this with an 802.1Q header:

dst src
48 48

Ethernet

TPID TCI
16

0x8100

16
802.1Q

type
16

<0x600

Ethertype

DSAP SSAP cntl
8

0xaa

8

0xaa

8

0x03

LLC

org type
24

0x000000

16

≥0x600

SNAP

. . .

Open vSwitch 2.7.90 38

ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

When a packet doesn’t match any of the header formats described above, Open vSwitch and OpenFlow set
this field to0x5ff (OFP_DL_TYPE_NOT_ETH_TYPE).

Open vSwitch 2.7.90 39

ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

VLAN FIELDS
Summary:

Name Bytes Mask RW? Prereqs NXM/OXM Support

dl_vlan 2 (low 12 bits) no yes none
dl_vlan_pcp 1 (low 3 bits) no yes none
vlan_vid 2 (low 12 bits) yes yes none OF 1.2+ and OVS 1.7+
vlan_pcp 1 (low 3 bits) no yes VLAN VID OF 1.2+ and OVS 1.7+
vlan_tci 2 yes yes none OVS 1.1+

The 802.1Q VLAN header causes more trouble than any other 4 bytes in networking. OpenFlow 1.0, 1.1,
and 1.2+ all treat VLANs differently. Open vSwitch extensions add another variant to the mix. Open
vSwitch reconciles all four treatments as best it can.

VLAN Header Format
An 802.1Q VLAN header consists of two 16-bit fields:

Ethertype
16

0x8100

TPID

PCP CFI VID
3 1

0

12
TCI

The first 16 bits of the VLAN header, theTPID (Tag Protocol IDentifier), is an Ethertype. When the VLAN
header is inserted just after the source and destination MAC addresses in a Ethertype frame, the TPID
serves to identify the presence of the VLAN. The standard TPID, the only one that Open vSwitch supports,
is 0x8100. OpenFlow 1.0 explicitly supports only TPID0x8100. OpenFlow 1.1, but not earlier or later ver-
sions, also requires support for TPID0x88a8(Open vSwitch does not support this). OpenFlow 1.2 through
1.5 do not require support for specific TPIDs (the ‘‘push vlan header’’ action does say that only0x8100and
0x88a8should be pushed). No version of OpenFlow provides a way to distinguish or match on the TPID.

The remaining 16 bits of the VLAN header, the TCI (Tag Control Information), is subdivided into three
subfields:

• PCP(Priority Control Point), is a 3-bit 802.1ppriority. The lowest priority is value 1, the
second-lowest is value 0, and priority increases from 2 up to highest priority 7.

• CFI (Canonical Format Indicator), is a 1-bit field. On an Ethernet network, its value is
always 0. This led to it later being repurposed under the nameDEI (Drop Eligibility Indi-
cator). By either name, OpenFlow and Open vSwitch don’t provide any way to match or
set this bit.

• VID (VLAN IDentifier), is a 12-bit VLAN. If the VID is 0, then the frame is not part of a
VLAN. In that case, the VLAN header is called apriority tag because it is only meaning-
ful for assigning the frame a priority. VID 0xfff (4,095) is reserved.

Seeeth_typefor illustrations of a complete Ethernet frame with 802.1Q tag included.

Multiple VLANs
Open vSwitch can match only a single VLAN header. If more than one VLAN header is present, then
eth_typeholds the TPID of the inner VLAN header. Open vSwitch stops parsing the packet after the inner
TPID, so matching further into the packet (e.g. on the inner TCI or L3 fields) is not possible.

OpenFlow only directly supports matching a single VLAN header. In OpenFlow 1.1 or later, one OpenFlow
table can match on the outermost VLAN header and pop it off, and a later OpenFlow table can match on the
next outermost header. Open vSwitch does not support this.

VLAN Field Details
The four variants have three different levels of expressiveness: OpenFlow 1.0 and 1.1 VLAN matching are
less powerful than OpenFlow 1.2+ VLAN matching, which is less powerful than Open vSwitch extension
VLAN matching.

Open vSwitch 2.7.90 40

ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

OpenFlow 1.0 VLAN Fields
OpenFlow 1.0 uses two fields, calleddl_vlan anddl_vlan_pcp, each of which can be either exact-matched
or wildcarded, to specify VLAN matches:

• When bothdl_vlan anddl_vlan_pcp are wildcarded, the flow matches packets without
an 802.1Q header or with any 802.1Q header.

• The matchdl_vlan=0xffff causes a flow to match only packets without an 802.1Q header.
Such a flow should also wildcarddl_vlan_pcp, since a packet without an 802.1Q header
does not have a PCP. OpenFlow does not specify what to do if a match on PCP is actually
present, but Open vSwitch ignores it.

• Otherwise, the flow matches only packets with an 802.1Q header. If dl_vlan is not wild-
carded, then the flow only matches packets with the VLAN ID specified indl_vlan’s low
12 bits. If dl_vlan_pcp is not wildcarded, then the flow only matches packets with the
priority specified indl_vlan_pcp’s low 3 bits.

OpenFlow does not specify how to interpret the high 4 bits ofdl_vlan or the high 5 bits
of dl_vlan_pcp. Open vSwitch ignores them.

OpenFlow 1.1 VLAN Fields
VLAN matching in OpenFlow 1.1 is similar to OpenFlow 1.0. The one refinement is that whendl_vlan
matches on0xfffe (OFVPID_ANY), the flow matches only packets with an 802.1Q header, with any
VLAN ID. If dl_vlan_pcp is wildcarded, the flow matches any packet with an 802.1Q header, reg ardless of
VLAN ID or priority. If dl_vlan_pcp is not wildcarded, then the flow only matches packets with the prior-
ity specified indl_vlan_pcp’s low 3 bits.

OpenFlow 1.1 uses the nameOFPVID_NONE, instead ofOFP_VLAN_NONE, for adl_vlan of 0xffff ,
but it has the same meaning.

In OpenFlow 1.1, Open vSwitch reports errorOFPBMC_BAD_VALUE for an attempt to match on
dl_vlan between 4,096 and0xfffd , inclusive, or dl_vlan_pcpgreater than 7.

OpenFlow 1.2 VLAN Fields
OpenFlow 1.2+ VLAN ID Field

Name: vlan_vid
Width: 16bits (only the least-significant 12 bits may be nonzero)
Format: decimal
Masking: arbitrarybitwise masks
Prerequisites: none
Access: read/write
OpenFlow 1.0: yes(exact match only)
OpenFlow 1.1: yes(exact match only)
OXM: OXM_OF_VLAN_VID (6) since OpenFlow 1.2 and Open vSwitch 1.7
NXM: none

The OpenFlow standard describes this field as consisting of ‘‘12+1’’ bits. On ingress, its value is 0 if no
802.1Q header is present, and otherwise it holds the VLAN VID in its least significant 12 bits, with bit 12
(0x1000akaOFPVID_PRESENT) also set to 1. The three most significant bits are always zero:

P VLAN ID
3

0

1 12
OXM_OF_VLAN_VID

As a consequence of this field’s format, one may use it to match the VLAN ID in all of the ways available
with the OpenFlow 1.0 and 1.1 formats, and a few new ways:

Fully wildcarded
Matches any packet, that is, one without an 802.1Q header or with an 802.1Q header with
any TCI value.

Open vSwitch 2.7.90 41

ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

Value0x0000(OFPVID_NONE), mask0xffff (or no mask)
Matches only packets without an 802.1Q header.

Value0x1000, mask0x1000
Matches any packet with an 802.1Q header, reg ardless of VLAN ID.

Value0x1009, mask0xffff (or no mask)
Match only packets with an 802.1Q header with VLAN ID 9.

Value0x1001, mask0x1001
Matches only packets that have an 802.1Q header with an odd-numbered VLAN ID.
(This is just an example; one can match on any desired VLAN ID bit pattern.)

OpenFlow 1.2+ VLAN Priority Field

Name: vlan_pcp
Width: 8bits (only the least-significant 3 bits may be nonzero)
Format: decimal
Masking: notmaskable
Prerequisites: VLANVID
Access: read/write
OpenFlow 1.0: yes(exact match only)
OpenFlow 1.1: yes(exact match only)
OXM: OXM_OF_VLAN_PCP (7) since OpenFlow 1.2 and Open vSwitch 1.7
NXM: none

The 3 least significant bits may be used to match the PCP bits in an 802.1Q header. Other bits are always
zero:

zero PCP
5

0

3
OXM_OF_VLAN_VID

This field may only be used whenvlan_vid is not wildcarded and does not exact match on 0 (which only
matches when there is no 802.1Q header).

SeeVLAN Comparison Chart, below, for some examples.

Open vSwitch Extension VLAN Field
Thevlan_tci extension can describe more kinds of VLAN matches than the other variants. It is also simpler
than the other variants.

VLAN TCI Field

Name: vlan_tci
Width: 16bits
Format: hexadecimal
Masking: arbitrarybitwise masks
Prerequisites: none
Access: read/write
OpenFlow 1.0: yes(exact match only)
OpenFlow 1.1: yes(exact match only)
OXM: none
NXM: NXM_OF_VLAN_TCI (4) since Open vSwitch 1.1

For a packet without an 802.1Q header, this field is zero. For a packet with an 802.1Q header, this field is
the TCI with the bit in CFI’s position (marked P for ‘‘present’’ below) forced to 1. Thus, for a packet in
VLAN 9 with priority 7, it has the value0xf009:

PCP P VID
3

7

1

1

12

9

NXM_VLAN_TCI

Open vSwitch 2.7.90 42

ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

Usage examples:

vlan_tci=0
Match packets without an 802.1Q header.

vlan_tci=0x1000/0x1000
Match packets with an 802.1Q header, reg ardless of VLAN and priority values.

vlan_tci=0xf123
Match packets tagged with priority 7 in VLAN 0x123.

vlan_tci=0x1123/0x1fff
Match packets tagged with VLAN 0x123 (and any priority).

vlan_tci=0x5000/0xf000
Match packets tagged with priority 2 (in any VLAN).

vlan_tci=0/0xfff
Match packets with no 802.1Q header or tagged with VLAN 0 (and any priority).

vlan_tci=0x5000/0xe000
Match packets with no 802.1Q header or tagged with priority 2 (in any VLAN).

vlan_tci=0/0xefff
Match packets with no 802.1Q header or tagged with VLAN 0 and priority 0.

SeeVLAN Comparison Chart, below, for more examples.

VLAN Comparison Chart
The following table describes each of several possible matching criteria on 802.1Q header may be
expressed with each variation of the VLAN matching fields:

Criteria OpenFlow 1.0 OpenFlow 1.1 OpenFlow 1.2+ NXM

[1] ???? /1,?? /? ???? /1,?? /? 0000 /0000 ,-- 0000 /0000
[2] ffff /0,?? /? f fff /0,?? /? 0000 /ffff ,-- 0000 /ffff
[3] 0xxx /0,?? /1 0xxx /0,?? /1 1xxx /ffff ,-- 1xxx /1fff
[4] ???? /1,0y /0 f ffe /0,0y /0 1000 /1000 ,0y z000 /f000
[5] 0xxx /0,0y /0 0xxx /0,0y /0 1xxx /ffff ,0y zxxx /ffff
[6] (none) (none) 1001 /1001 ,-- 1001 /1001
[7] (none) (none) (none) 3000 /3000
[8] (none) (none) (none) 0000 /0fff
[9] (none) (none) (none) 0000 /f000

[10] (none) (none) (none) 0000 /efff

All numbers in the table are expressed in hexadecimal. The columns in the table are interpreted as follows:

Criteria See the list below.

OpenFlow 1.0
OpenFlow 1.1

wwww/x,yy/z means VLAN ID match value wwwwwith wildcard bit x and VLAN
PCP match valueyy with wildcard bitz . ? means that the given bits are ignored (and
conventionally 0 for wwwwor yy , conventionally 1 for x or z). ‘‘(none)’’ means that
OpenFlow 1.0 (or 1.1) cannot match with these criteria.

OpenFlow 1.2+
xxxx/yyyy,zz meansvlan_vid with value xxxx and maskyyyy , and vlan_pcp
(which is not maskable) with value zz . −− means thatvlan_pcp is omitted. ‘‘(none)’’
means that OpenFlow 1.2 cannot match with these criteria.

NXM xxxx/yyyy meansvlan_tci with valuexxxx and maskyyyy .

The matching criteria described by the table are:

Open vSwitch 2.7.90 43

ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

[1] Matches any packet, that is, one without an 802.1Q header or with an 802.1Q header with
any TCI value.

[2] Matches only packets without an 802.1Q header.

OpenFlow 1.0 doesn’t define the behavior ifdl_vlan is set to0xffff anddl_vlan_pcp is
not wildcarded. (Open vSwitch always ignoresdl_vlan_pcp when dl_vlan is set to
0xffff .)

OpenFlow 1.1 says explicitly to ignoredl_vlan_pcpwhendl_vlan is set to0xffff .

OpenFlow 1.2 doesn’t say how to interpret a match withvlan_vid value 0 and a mask
with OFPVID_PRESENT (0x1000) set to 1 and some other bits in the mask set to 1
also. Open vSwitch interprets it the same way as a mask of0x1000.

Any NXM match withvlan_tci value 0 and the CFI bit set to 1 in the mask is equivalent
to the one listed in the table.

[3] Matches only packets that have an 802.1Q header with VIDxxx (and any PCP).

[4] Matches only packets that have an 802.1Q header with PCPy (and any VID).

OpenFlow 1.0 doesn’t clearly define the behavior for this case. Open vSwitch implements
it this way.

In the NXM value,z equals (y << 1) | 1.

[5] Matches only packets that have an 802.1Q header with VIDxxx and PCPy .

In the NXM value,z equals (y << 1) | 1.

[6] Matches only packets that have an 802.1Q header with an odd-numbered VID (and any
PCP). Only possible with OpenFlow 1.2 and NXM. (This is just an example; one can
match on any desired VID bit pattern.)

[7] Matches only packets that have an 802.1Q header with an odd-numbered PCP (and any
VID). Only possible with NXM. (This is just an example; one can match on any desired
VID bit pattern.)

[8] Matches packets with no 802.1Q header or with an 802.1Q header with a VID of 0. Only
possible with NXM.

[9] Matches packets with no 802.1Q header or with an 802.1Q header with a PCP of 0. Only
possible with NXM.

[10] Matches packets with no 802.1Q header or with an 802.1Q header with both VID and
PCP of 0. Only possible with NXM.

Open vSwitch 2.7.90 44

ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

LAYER 2.5: MPLS FIELDS
Summary:

Name Bytes Mask RW? Prereqs NXM/OXM Support

mpls_label 4 (low 20 bits) no yes MPLS OF 1.2+ and OVS 1.11+
mpls_tc 1 (low 3 bits) no yes MPLS OF 1.2+ and OVS 1.11+
mpls_bos 1 (low 1 bits) no no MPLS OF 1.3+ and OVS 1.11+
mpls_ttl 1 no yes MPLS OVS 2.6+

One or more MPLS headers (more commonly calledMPLS labels) follow an Ethernet type field that speci-
fies an MPLS Ethernet type [RFC 3032]. Ethertype0x8847 is used for all unicast. Multicast MPLS is
divided into two specific classes, one of which uses Ethertype0x8847and the other0x8848[RFC 5332].

The most common overall packet format is Ethernet II, shown below (SNAP encapsulation may be used but
is not ordinarily seen in Ethernet networks):

dst src type
48 48 16

0x8847

Ethernet

label TC S TTL
20 3 1 8

MPLS

. . .

MPLS can be encapsulated inside an 802.1Q header, in which case the combination looks like this:

dst src
48 48

Ethernet

TPID TCI
16

0x8100

16
802.1Q

type
16

0x8847

Ethertype

label TC S TTL
20 3 1 8

MPLS

. . .

The fields within an MPLS label are:

Label, 20 bits.
An identifier.

Traffic control (TC), 3 bits.
Used for quality of service.

Bottom of stack (BOS), 1 bit (labeled just ‘‘S’’ above).
0 indicates that another MPLS label follows this one.

1 indicates that this MPLS label is the last one in the stack, so that some other protocol
follows this one.

Time to live (TTL), 8 bits.
Each hop across an MPLS network decrements the TTL by 1. If it reaches 0, the packet is
discarded.

OpenFlow does not make the MPLS TTL available as a match field, but actions are avail-
able to set and decrement the TTL. Open vSwitch 2.6 and later makes the MPLS TTL
available as an extension.

MPLS Label Stacks
Unlike the other encapsulations supported by OpenFlow and Open vSwitch, MPLS labels are routinely
used in ‘‘stacks’’ two or three deep and sometimes even deeper. Open vSwitch currently supports up to
three labels.

The OpenFlow specification only supports matching on the outermost MPLS label at any giv en time. To
match on the second label, one must first ‘‘pop’’ the outer label and advance to another OpenFlow table,
where the inner label may be matched. To match on the third label, one must pop the two outer labels, and
so on. The Open Networking Foundation is considering support for directly matching on multiple MPLS
labels for OpenFlow 1.6.

Open vSwitch 2.7.90 45

ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

MPLS Inner Protocol
Unlike all other forms of encapsulation that Open vSwitch and OpenFlow support, an MPLS label does not
indicate what inner protocol it encapsulates. Different deployments determine the inner protocol in different
ways [RFC 3032]:

• A few reserved label values do indicate an inner protocol. Label 0, the ‘‘IPv4 Explicit
NULL Label,’’ i ndicates inner IPv4. Label 2, the ‘‘IPv6 Explicit NULL Label,’’ i ndicates
inner IPv6.

• Some deployments use a single inner protocol consistently.

• In some deployments, the inner protocol must be inferred from the innermost label.

• In some deployments, the inner protocol must be inferred from the innermost label and
the encapsulated data, e.g. to distinguish between inner IPv4 and IPv6 based on whether
the first nibble of the inner protocol data are4 or 6. OpenFlow and Open vSwitch do not
currently support these cases.

Open vSwitch and OpenFlow do not infer the inner protocol, even if reserved label values are in use.
Instead, the flow table must specify the inner protocol at the time it pops the bottommost MPLS label, using
the Ethertype argument to thepop_mplsaction.

Field Details
MPLS Label Field

Name: mpls_label
Width: 32bits (only the least-significant 20 bits may be nonzero)
Format: decimal
Masking: notmaskable
Prerequisites: MPLS
Access: read/write
OpenFlow 1.0: notsupported
OpenFlow 1.1: yes(exact match only)
OXM: OXM_OF_MPLS_LABEL (34) since OpenFlow 1.2 and Open vSwitch 1.11
NXM: none

The least significant 20 bits hold the ‘‘label’’ fi eld from the MPLS label. Other bits are zero:

zero label
12

0

20
OXM_OF_MPLS_LABEL

Most label values are available for any use by deployments. Values under 16 are reserved.

MPLS Traffic Class Field

Name: mpls_tc
Width: 8bits (only the least-significant 3 bits may be nonzero)
Format: decimal
Masking: notmaskable
Prerequisites: MPLS
Access: read/write
OpenFlow 1.0: notsupported
OpenFlow 1.1: yes(exact match only)
OXM: OXM_OF_MPLS_TC (35) since OpenFlow 1.2 and Open vSwitch 1.11
NXM: none

The least significant 3 bits hold the TC field from the MPLS label. Other bits are zero:

zero TC
5

0

3
OXM_OF_MPLS_TC

Open vSwitch 2.7.90 46

ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

This field is intended for use for Quality of Service (QoS) and Explicit Congestion Notification purposes,
but its particular interpretation is deployment specific.

Before 2009, this field was named EXP and reserved for experimental use [RFC 5462].

MPLS Bottom of Stack Field

Name: mpls_bos
Width: 8bits (only the least-significant 1 bits may be nonzero)
Format: decimal
Masking: notmaskable
Prerequisites: MPLS
Access: read-only
OpenFlow 1.0: notsupported
OpenFlow 1.1: notsupported
OXM: OXM_OF_MPLS_BOS (36) since OpenFlow 1.3 and Open vSwitch 1.11
NXM: none

The least significant bit holds the BOS field from the MPLS label. Other bits are zero:

zero BOS
7

0

1
OXM_OF_MPLS_BOS

This field is useful as part of processing a series of incoming MPLS labels. A flow that includes a
pop_mplsaction should generally match onmpls_bos:

• Whenmpls_bos is 1, there is another MPLS label following this one, so the Ethertype
passed to pop_mpls should be an MPLS Ethertype. For example: table=0,
dl_type=0x8847, mpls_bos=1, actions=pop_mpls:0x8847, goto_table:1

• When mpls_bos is 0, this MPLS label is the last one, so the Ethertype passed to
pop_mpls should be a non-MPLS Ethertype such as IPv4. For example: table=1,
dl_type=0x8847, mpls_bos=0, actions=pop_mpls:0x0800, goto_table:2

MPLS Time-to-Li ve Field

Name: mpls_ttl
Width: 8bits
Format: decimal
Masking: notmaskable
Prerequisites: MPLS
Access: read/write
OpenFlow 1.0: notsupported
OpenFlow 1.1: notsupported
OXM: none
NXM: NXM_NX_MPLS_TTL (30) since Open vSwitch 2.6

Holds the 8-bit time-to-live field from the MPLS label:

TTL
8

NXM_NX_MPLS_TTL

Open vSwitch 2.7.90 47

ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

LAYER 3: IPV4 AND IPV6 FIELDS
Summary:

Name Bytes Mask RW? Prereqs NXM/OXM Support

ip_src akanw_src 4 yes yes IPv4 OF1.2+ and OVS 1.1+
ip_dst akanw_dst 4 yes yes IPv4 OF1.2+ and OVS 1.1+
ipv6_src 16 yes yes IPv6 OF 1.2+ and OVS 1.1+
ipv6_dst 16 yes yes IPv6 OF 1.2+ and OVS 1.1+
ipv6_label 4 (low 20 bits) yes yes IPv6 OF 1.2+ and OVS 1.4+
nw_proto akaip_proto 1 no no IPv4/IPv6 OF1.2+ and OVS 1.1+
nw_ttl 1 no yes IPv4/IPv6 OVS 1.4+
ip_frag 1 (low 2 bits) yes no IPv4/IPv6 OVS 1.3+
nw_tos 1 no yes IPv4/IPv6 OVS 1.1+
ip_dscp 1 (low 6 bits) no yes IPv4/IPv6 OF 1.2+ and OVS 1.7+
nw_ecnakaip_ecn 1 (low 2 bits) no yes IPv4/IPv6 OF 1.2+ and OVS 1.4+

IPv4 Specific Fields
These fields are applicable only to IPv4 flows, that is, flows that match on the IPv4 Ethertype0x0800.

IPv4 Source Address Field

Name: ip_src (akanw_src)
Width: 32bits
Format: IPv4
Masking: arbitrarybitwise masks
Prerequisites: IPv4
Access: read/write
OpenFlow 1.0: yes(CIDR match only)
OpenFlow 1.1: yes
OXM: OXM_OF_IPV4_SRC (11) since OpenFlow 1.2 and Open vSwitch 1.7
NXM: NXM_OF_IP_SRC (7) since Open vSwitch 1.1

The source address from the IPv4 header:

dst src type
48 48 16

0x800

Ethernet

. . . proto src dst
8 32 32

IPv4

. . .

For historical reasons, in an ARP or RARP flow, Open vSwitch interprets matches onnw_src as actually
referring to the ARP SPA.

IPv4 Destination Address Field

Name: ip_dst (akanw_dst)
Width: 32bits
Format: IPv4
Masking: arbitrarybitwise masks
Prerequisites: IPv4
Access: read/write
OpenFlow 1.0: yes(CIDR match only)
OpenFlow 1.1: yes
OXM: OXM_OF_IPV4_DST (12) since OpenFlow 1.2 and Open vSwitch 1.7
NXM: NXM_OF_IP_DST (8) since Open vSwitch 1.1

The destination address from the IPv4 header:

dst src type
48 48 16

0x800

Ethernet

. . . proto src dst
8 32 32

IPv4

. . .

Open vSwitch 2.7.90 48

ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

For historical reasons, in an ARP or RARP flow, Open vSwitch interprets matches onnw_dst as actually
referring to the ARP TPA.

IPv6 Specific Fields
These fields apply only to IPv6 flows, that is, flows that match on the IPv6 Ethertype0x86dd.

IPv6 Source Address Field

Name: ipv6_src
Width: 128bits
Format: IPv6
Masking: arbitrarybitwise masks
Prerequisites: IPv6
Access: read/write
OpenFlow 1.0: notsupported
OpenFlow 1.1: notsupported
OXM: OXM_OF_IPV6_SRC (26) since OpenFlow 1.2 and Open vSwitch 1.1
NXM: NXM_NX_IPV6_SRC (19) since Open vSwitch 1.1

The source address from the IPv6 header:

dst src type
48 48 16

0x86dd

Ethernet

. . . next src dst
8 128 128

IPv6

. . .

Open vSwitch 1.8 added support for bitwise matching; earlier versions supported only CIDR masks.

IPv6 Destination Address Field

Name: ipv6_dst
Width: 128bits
Format: IPv6
Masking: arbitrarybitwise masks
Prerequisites: IPv6
Access: read/write
OpenFlow 1.0: notsupported
OpenFlow 1.1: notsupported
OXM: OXM_OF_IPV6_DST (27) since OpenFlow 1.2 and Open vSwitch 1.1
NXM: NXM_NX_IPV6_DST (20) since Open vSwitch 1.1

The destination address from the IPv6 header:

dst src type
48 48 16

0x86dd

Ethernet

. . . next src dst
8 128 128

IPv6

. . .

Open vSwitch 1.8 added support for bitwise matching; earlier versions supported only CIDR masks.

IPv6 Flow Label Field

Name: ipv6_label
Width: 32bits (only the least-significant 20 bits may be nonzero)
Format: hexadecimal
Masking: arbitrarybitwise masks
Prerequisites: IPv6
Access: read/write

Open vSwitch 2.7.90 49

ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

OpenFlow 1.0: notsupported
OpenFlow 1.1: notsupported
OXM: OXM_OF_IPV6_FLABEL (28) since OpenFlow 1.2 and Open vSwitch 1.7
NXM: NXM_NX_IPV6_LABEL (27) since Open vSwitch 1.4

The least significant 20 bits hold the flow label field from the IPv6 header. Other bits are zero:

zero label
12

0

20
OXM_OF_IPV6_FLABEL

IPv4/IPv6 Fields
These fields exist with at least approximately the same meaning in both IPv4 and IPv6, so they are treated
as a single field for matching purposes. Any flow that matches on the IPv4 Ethertype0x0800or the IPv6
Ethertype0x86ddmay match on these fields.

IPv4/v6 Protocol Field

Name: nw_proto (akaip_proto)
Width: 8bits
Format: decimal
Masking: notmaskable
Prerequisites: IPv4/IPv6
Access: read-only
OpenFlow 1.0: yes(exact match only)
OpenFlow 1.1: yes(exact match only)
OXM: OXM_OF_IP_PROT O (10) since OpenFlow 1.2 and Open vSwitch 1.7
NXM: NXM_OF_IP_PROT O (6) since Open vSwitch 1.1

Matches the IPv4 or IPv6 protocol type.

For historical reasons, in an ARP or RARP flow, Open vSwitch interprets matches onnw_proto as actually
referring to the ARP opcode. The ARP opcode is a 16-bit field, so for matching purposes ARP opcodes
greater than 255 are treated as 0; this works adequately because in practice ARP and RARP only use
opcodes 1 through 4.

IPv4/v6 TTL/Hop Limit Field

Name: nw_ttl
Width: 8bits
Format: decimal
Masking: notmaskable
Prerequisites: IPv4/IPv6
Access: read/write
OpenFlow 1.0: notsupported
OpenFlow 1.1: notsupported
OXM: none
NXM: NXM_NX_IP_TTL (29) since Open vSwitch 1.4

The main reason to match on the TTL or hop limit field is to detect whether adec_ttl action will fail due to
a TTL exceeded error. Another way that a controller can detect TTL exceeded is to listen for
OFPR_INVALID_TTL ‘‘ packet-in’’ messages via OpenFlow.

IPv4/v6 Fragment Bitmask Field

Name: ip_frag
Width: 8bits (only the least-significant 2 bits may be nonzero)
Format: frag
Masking: arbitrarybitwise masks

Open vSwitch 2.7.90 50

ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

Prerequisites: IPv4/IPv6
Access: read-only
OpenFlow 1.0: notsupported
OpenFlow 1.1: notsupported
OXM: none
NXM: NXM_NX_IP_FRAG (26) since Open vSwitch 1.3

Specifies what kinds of IP fragments or non-fragments to match. The value for this field is most conve-
niently specified as one of the following:

no Match only non-fragmented packets.

yes Matches all fragments.

first Matches only fragments with offset 0.

later Matches only fragments with nonzero offset.

not_later
Matches non-fragmented packets and fragments with zero offset.

The field is internally formatted as 2 bits: bit 0 is 1 for an IP fragment with any offset (and otherwise 0),
and bit 1 is 1 for an IP fragment with nonzero offset (and otherwise 0), like so:

zero later any
6

0

1 1
NXM_NX_IP_FRAG

Even though 2 bits have 4 possible values, this field only uses 3 of them:

• A packet that is not an IP fragment has value 0.

• A packet that is an IP fragment with offset 0 (the first fragment) has bit 0 set and thus
value 1.

• A packet that is an IP fragment with nonzero offset has bits 0 and 1 set and thus value 3.

The switch may reject matches against values that can never appear.

It is important to understand how this field interacts with the OpenFlow fragment handling mode:

• In OFPC_FRAG_DROPmode, the OpenFlow switch drops all IP fragments before they
reach the flow table, so every packet that is available for matching will have value 0 in
this field.

• Open vSwitch does not implementOFPC_FRAG_REASM mode, but if it did then IP
fragments would be reassembled before they reached the flow table and again every
packet available for matching would always have value 0.

• In OFPC_FRAG_NORMAL mode, all three values are possible, but OpenFlow 1.0 says
that fragments’ transport ports are always 0, even for the first fragment, so this does not
provide much extra information.

• In OFPC_FRAG_NX_MATCH mode, all three values are possible. For fragments with
offset 0, Open vSwitch makes L4 header information available.

Thus, this field is likely to be most useful for an Open vSwitch switch configured in
OFPC_FRAG_NX_MATCH mode. See the description of theset−frags command inovs−ofctl(8), for
more details.

IPv4/IPv6 TOS Fields

IPv4 and IPv6 contain a one-byte ‘‘type of service’’ or TOS field that has the following format:

DSCP ECN
6 2

type of service

Open vSwitch 2.7.90 51

ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

IPv4/v6 DSCP (Bits 2-7) Field

Name: nw_tos
Width: 8bits
Format: decimal
Masking: notmaskable
Prerequisites: IPv4/IPv6
Access: read/write
OpenFlow 1.0: yes(exact match only)
OpenFlow 1.1: yes(exact match only)
OXM: none
NXM: NXM_OF_IP_TOS (5) since Open vSwitch 1.1

This field is the TOS byte with the two ECN bits cleared to 0:

DSCP zero
6 2

0

NXM_OF_IP_TOS

IPv4/v6 DSCP (Bits 0-5) Field

Name: ip_dscp
Width: 8bits (only the least-significant 6 bits may be nonzero)
Format: decimal
Masking: notmaskable
Prerequisites: IPv4/IPv6
Access: read/write
OpenFlow 1.0: yes(exact match only)
OpenFlow 1.1: yes(exact match only)
OXM: OXM_OF_IP_DSCP(8) since OpenFlow 1.2 and Open vSwitch 1.7
NXM: none

This field is the TOS byte shifted right to put the DSCP bits in the 6 least-significant bits:

zero DSCP
2

0

6
OXM_OF_IP_DSCP

IPv4/v6 ECN Field

Name: nw_ecn(akaip_ecn)
Width: 8bits (only the least-significant 2 bits may be nonzero)
Format: decimal
Masking: notmaskable
Prerequisites: IPv4/IPv6
Access: read/write
OpenFlow 1.0: notsupported
OpenFlow 1.1: yes(exact match only)
OXM: OXM_OF_IP_ECN (9) since OpenFlow 1.2 and Open vSwitch 1.7
NXM: NXM_NX_IP_ECN (28) since Open vSwitch 1.4

This field is the TOS byte with the DSCP bits cleared to 0:

zero ECN
6

0

2
OXM_OF_IP_ECN

Open vSwitch 2.7.90 52

ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

Open vSwitch 2.7.90 53

ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

LAYER 3: ARP FIELDS
Summary:

Name Bytes Mask RW? Prereqs NXM/OXM Support

arp_op 2 no yes ARP OF 1.2+ and OVS 1.1+
arp_spa 4 yes yes ARP OF1.2+ and OVS 1.1+
arp_tpa 4 yes yes ARP OF1.2+ and OVS 1.1+
arp_sha 6 yes yes ARP OF1.2+ and OVS 1.1+
arp_tha 6 yes yes ARP OF1.2+ and OVS 1.1+

In theory, Address Resolution Protocol, or ARP, is a generic protocol generic protocol that can be used to
obtain the hardware address that corresponds to any higher-level protocol address. In contemporary usage,
ARP is used only in Ethernet networks to obtain the Ethernet address for a given IPv4 address. OpenFlow
and Open vSwitch only support this usage of ARP. For this use case, an ARP packet has the following for-
mat, with the ARP fields exposed as Open vSwitch fields highlighted:

dst src type
48 48 16

0x806

Ethernet

hrd pro hlnpln op sha spa tha tpa
16

1

16

0x800

8

6

8

4

16 48 16 48 16
ARP

The ARP fields are also used for RARP, the Reverse Address Resolution Protocol, which shares ARP’s
wire format.

ARP Opcode Field

Name: arp_op
Width: 16bits
Format: decimal
Masking: notmaskable
Prerequisites: ARP
Access: read/write
OpenFlow 1.0: yes(exact match only)
OpenFlow 1.1: yes(exact match only)
OXM: OXM_OF_ARP_OP (21) since OpenFlow 1.2 and Open vSwitch 1.7
NXM: NXM_OF_ARP_OP (15) since Open vSwitch 1.1

Even though this is a 16-bit field, Open vSwitch does not support ARP opcodes greater than 255; it treats
them to zero. This works adequately because in practice ARP and RARP only use opcodes 1 through 4.

ARP Source IPv4 Address Field

Name: arp_spa
Width: 32bits
Format: IPv4
Masking: arbitrarybitwise masks
Prerequisites: ARP
Access: read/write
OpenFlow 1.0: yes(CIDR match only)
OpenFlow 1.1: yes
OXM: OXM_OF_ARP_SPA(22) since OpenFlow 1.2 and Open vSwitch 1.7
NXM: NXM_OF_ARP_SPA (16) since Open vSwitch 1.1

ARP Target IPv4 Address Field

Name: arp_tpa
Width: 32bits
Format: IPv4
Masking: arbitrarybitwise masks
Prerequisites: ARP

Open vSwitch 2.7.90 54

ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

Access: read/write
OpenFlow 1.0: yes(CIDR match only)
OpenFlow 1.1: yes
OXM: OXM_OF_ARP_TPA (23) since OpenFlow 1.2 and Open vSwitch 1.7
NXM: NXM_OF_ARP_TPA (17) since Open vSwitch 1.1

ARP Source Ethernet Address Field

Name: arp_sha
Width: 48bits
Format: Ethernet
Masking: arbitrarybitwise masks
Prerequisites: ARP
Access: read/write
OpenFlow 1.0: notsupported
OpenFlow 1.1: notsupported
OXM: OXM_OF_ARP_SHA (24) since OpenFlow 1.2 and Open vSwitch 1.7
NXM: NXM_NX_ARP_SHA (17) since Open vSwitch 1.1

ARP Target Ethernet Address Field

Name: arp_tha
Width: 48bits
Format: Ethernet
Masking: arbitrarybitwise masks
Prerequisites: ARP
Access: read/write
OpenFlow 1.0: notsupported
OpenFlow 1.1: notsupported
OXM: OXM_OF_ARP_THA (25) since OpenFlow 1.2 and Open vSwitch 1.7
NXM: NXM_NX_ARP_THA (18) since Open vSwitch 1.1

Open vSwitch 2.7.90 55

ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

LAYER 4: TCP, UDP, AND SCTP FIELDS
Summary:

Name Bytes Mask RW? Prereqs NXM/OXM Support

tcp_srcakatp_src 2 yes yes TCP OF1.2+ and OVS 1.1+
tcp_dstakatp_dst 2 yes yes TCP OF1.2+ and OVS 1.1+
tcp_flags 2 (low 12 bits) yes no TCP OF 1.3+ and OVS 2.1+
udp_src 2 yes yes UDP OF1.2+ and OVS 1.1+
udp_dst 2 yes yes UDP OF1.2+ and OVS 1.1+
sctp_src 2 yes yes SCTP OF1.2+ and OVS 2.0+
sctp_dst 2 yes yes SCTP OF1.2+ and OVS 2.0+

For matching purposes, no distinction is made whether these protocols are encapsulated within IPv4 or
IPv6.

TCP
The following diagram shows TCP within IPv4. Open vSwitch also supports TCP in IPv6. Only TCP fields
implemented as Open vSwitch fields are shown:

dst src type
48 48 16

0x800

Ethernet

. . . proto src dst
8

6

32 32
IPv4

srcdst . . . flags . . .
16 16 12

TCP

. . .

TCP Source Port Field

Name: tcp_src (akatp_src)
Width: 16bits
Format: decimal
Masking: arbitrarybitwise masks
Prerequisites: TCP
Access: read/write
OpenFlow 1.0: yes(exact match only)
OpenFlow 1.1: yes(exact match only)
OXM: OXM_OF_TCP_SRC(13) since OpenFlow 1.2 and Open vSwitch 1.7
NXM: NXM_OF_TCP_SRC (9) since Open vSwitch 1.1

Open vSwitch 1.6 added support for bitwise matching.

TCP Destination Port Field

Name: tcp_dst (akatp_dst)
Width: 16bits
Format: decimal
Masking: arbitrarybitwise masks
Prerequisites: TCP
Access: read/write
OpenFlow 1.0: yes(exact match only)
OpenFlow 1.1: yes(exact match only)
OXM: OXM_OF_TCP_DST (14) since OpenFlow 1.2 and Open vSwitch 1.7
NXM: NXM_OF_TCP_DST (10) since Open vSwitch 1.1

Open vSwitch 1.6 added support for bitwise matching.

TCP Flags Field

Name: tcp_flags
Width: 16bits (only the least-significant 12 bits may be nonzero)
Format: TCPflags
Masking: arbitrarybitwise masks

Open vSwitch 2.7.90 56

ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

Prerequisites: TCP
Access: read-only
OpenFlow 1.0: notsupported
OpenFlow 1.1: notsupported
OXM: ONFOXM_ET_TCP_FLAGS (42) since OpenFlow 1.3 and Open vSwitch 2.4;

OXM_OF_TCP_FLAGS (42) since OpenFlow 1.5 and Open vSwitch 2.3
NXM: NXM_NX_TCP_FLAGS (34) since Open vSwitch 2.1

This field holds the TCP flags. TCP currently defines 9 flag bits. An additional 3 bits are reserved. For more
information, see [RFC 793], [RFC 3168], and [RFC 3540].

Matches on this field are most conveniently written in terms of symbolic names (given in the diagram
below), each preceded by either+ for a flag that must be set, or− for a flag that must be unset, without any
other delimiters between the flags. Flags not mentioned are wildcarded. For example,
tcp,tcp_flags=+syn−ackmatches TCP SYNs that are not ACKs, andtcp,tcp_flags=+[200]matches TCP
packets with the reserved [200] flag set. Matches can also be written asflags/mask, whereflagsandmask
are 16-bit numbers in decimal or in hexadecimal prefixed by0x.

The flag bits are:

zero
4

0
[800] [400] [200]

1 1 1
reserved

NS CWR ECE
1 1 1

later RFCs

URG ACK PSH RST SYN FIN
1 1 1 1 1 1

RFC 793

UDP
The following diagram shows UDP within IPv4. Open vSwitch also supports UDP in IPv6. Only UDP
fields that Open vSwitch exposes as fields are shown:

dst src type
48 48 16

0x800

Ethernet

. . . proto src dst
8

17

32 32
IPv4

srcdst . . .
16 16

UDP

. . .

UDP Source Port Field

Name: udp_src
Width: 16bits
Format: decimal
Masking: arbitrarybitwise masks
Prerequisites: UDP
Access: read/write
OpenFlow 1.0: yes(exact match only)
OpenFlow 1.1: yes(exact match only)
OXM: OXM_OF_UDP_SRC(15) since OpenFlow 1.2 and Open vSwitch 1.7
NXM: NXM_OF_UDP_SRC(11) since Open vSwitch 1.1

UDP Destination Port Field

Name: udp_dst
Width: 16bits
Format: decimal
Masking: arbitrarybitwise masks
Prerequisites: UDP
Access: read/write
OpenFlow 1.0: yes(exact match only)
OpenFlow 1.1: yes(exact match only)
OXM: OXM_OF_UDP_DST(16) since OpenFlow 1.2 and Open vSwitch 1.7

Open vSwitch 2.7.90 57

ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

NXM: NXM_OF_UDP_DST (12) since Open vSwitch 1.1

SCTP
The following diagram shows SCTP within IPv4. Open vSwitch also supports SCTP in IPv6. Only SCTP
fields that Open vSwitch exposes as fields are shown:

dst src type
48 48 16

0x800

Ethernet

. . . proto src dst
8

132

32 32
IPv4

srcdst . . .
16 16

SCTP

. . .

SCTP Source Port Field

Name: sctp_src
Width: 16bits
Format: decimal
Masking: arbitrarybitwise masks
Prerequisites: SCTP
Access: read/write
OpenFlow 1.0: notsupported
OpenFlow 1.1: yes(exact match only)
OXM: OXM_OF_SCTP_SRC(17) since OpenFlow 1.2 and Open vSwitch 2.0
NXM: none

SCTP Destination Port Field

Name: sctp_dst
Width: 16bits
Format: decimal
Masking: arbitrarybitwise masks
Prerequisites: SCTP
Access: read/write
OpenFlow 1.0: notsupported
OpenFlow 1.1: yes(exact match only)
OXM: OXM_OF_SCTP_DST(18) since OpenFlow 1.2 and Open vSwitch 2.0
NXM: none

Open vSwitch 2.7.90 58

ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

LAYER 4: ICMPV4 AND ICMPV6 FIELDS
Summary:

Name Bytes Mask RW? Prereqs NXM/OXM Support

icmp_type 1 no yes ICMPv4 OF 1.2+ and OVS 1.1+
icmp_code 1 no yes ICMPv4 OF 1.2+ and OVS 1.1+
icmpv6_type 1 no yes ICMPv6 OF 1.2+ and OVS 1.1+
icmpv6_code 1 no yes ICMPv6 OF 1.2+ and OVS 1.1+
nd_target 16 yes yes ND OF 1.2+ and OVS 1.1+
nd_sll 6 yes yes ND solicit OF 1.2+ and OVS 1.1+
nd_tll 6 yes yes ND advert OF1.2+ and OVS 1.1+

ICMPv4

dst src type
48 48 16

0x800

Ethernet

. . . proto src dst
8

1

32 32
IPv4

type code . . .
8 8

ICMPv4

. . .

ICMPv4 Type Field

Name: icmp_type
Width: 8bits
Format: decimal
Masking: notmaskable
Prerequisites: ICMPv4
Access: read/write
OpenFlow 1.0: yes(exact match only)
OpenFlow 1.1: yes(exact match only)
OXM: OXM_OF_ICMPV4_TYPE (19) since OpenFlow 1.2 and Open vSwitch 1.7
NXM: NXM_OF_ICMP_TYPE (13) since Open vSwitch 1.1

For historical reasons, in an ICMPv4 flow, Open vSwitch interprets matches ontp_src as actually referring
to the ICMP type.

ICMPv4 Code Field

Name: icmp_code
Width: 8bits
Format: decimal
Masking: notmaskable
Prerequisites: ICMPv4
Access: read/write
OpenFlow 1.0: yes(exact match only)
OpenFlow 1.1: yes(exact match only)
OXM: OXM_OF_ICMPV4_CODE (20) since OpenFlow 1.2 and Open vSwitch 1.7
NXM: NXM_OF_ICMP_CODE (14) since Open vSwitch 1.1

For historical reasons, in an ICMPv4 flow, Open vSwitch interprets matches ontp_dst as actually referring
to the ICMP code.

ICMPv6

dst src type
48 48 16

0x86dd

Ethernet

. . . next src dst
8

58

128 128
IPv6

type code . . .
8 8

ICMPv6

. . .

ICMPv6 Type Field

Name: icmpv6_type

Open vSwitch 2.7.90 59

ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

Width: 8bits
Format: decimal
Masking: notmaskable
Prerequisites: ICMPv6
Access: read/write
OpenFlow 1.0: notsupported
OpenFlow 1.1: notsupported
OXM: OXM_OF_ICMPV6_TYPE (29) since OpenFlow 1.2 and Open vSwitch 1.7
NXM: NXM_NX_ICMPV6_TYPE (21) since Open vSwitch 1.1

ICMPv6 Code Field

Name: icmpv6_code
Width: 8bits
Format: decimal
Masking: notmaskable
Prerequisites: ICMPv6
Access: read/write
OpenFlow 1.0: notsupported
OpenFlow 1.1: notsupported
OXM: OXM_OF_ICMPV6_CODE (30) since OpenFlow 1.2 and Open vSwitch 1.7
NXM: NXM_NX_ICMPV6_CODE (22) since Open vSwitch 1.1

ICMPv6 Neighbor Discovery

dst src type
48 48 16

0x86dd

Ethernet

. . . next src dst
8

58

128 128
IPv6

type code . . .
8

135/136

8

0

ICMPv6

target option . . .
128
ICMPv6 ND

ICMPv6 Neighbor Discovery Target IPv6 Field

Name: nd_target
Width: 128bits
Format: IPv6
Masking: arbitrarybitwise masks
Prerequisites: ND
Access: read/write
OpenFlow 1.0: notsupported
OpenFlow 1.1: notsupported
OXM: OXM_OF_IPV6_ND_TARGET (31) since OpenFlow 1.2 and Open vSwitch 1.7
NXM: NXM_NX_ND_TARGET (23) since Open vSwitch 1.1

ICMPv6 Neighbor Discovery Source Ethernet Address Field

Name: nd_sll
Width: 48bits
Format: Ethernet
Masking: arbitrarybitwise masks
Prerequisites: NDsolicit
Access: read/write
OpenFlow 1.0: notsupported
OpenFlow 1.1: notsupported
OXM: OXM_OF_IPV6_ND_SLL (32) since OpenFlow 1.2 and Open vSwitch 1.7
NXM: NXM_NX_ND_SLL (24) since Open vSwitch 1.1

ICMPv6 Neighbor Discovery Target Ethernet Address Field

Name: nd_tll

Open vSwitch 2.7.90 60

ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

Width: 48bits
Format: Ethernet
Masking: arbitrarybitwise masks
Prerequisites: NDadvert
Access: read/write
OpenFlow 1.0: notsupported
OpenFlow 1.1: notsupported
OXM: OXM_OF_IPV6_ND_TLL (33) since OpenFlow 1.2 and Open vSwitch 1.7
NXM: NXM_NX_ND_TLL (25) since Open vSwitch 1.1

REFERENCES
Casado M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and S. Shenker, ‘‘Ethane:

Taking Control of the Enterprise,’’ Computer Communications Review, October 2007.

EXT−56
J. Tonsing, ‘‘Permit one of a set of prerequisites to apply, e.g. don’t preclude non-Ether-
net media,’’ 〈https://rs.opennetworking.org/bugs/browse/EXT−56 〉
(ONF members only).

EXT−112
J. Tourrilhes, ‘‘Support non-Ethernet packets throughout the pipeline,’’ 〈https://
rs.opennetworking.org/bugs/browse/EXT−112 〉 (ONF members only).

EXT−134
J. Tourrilhes, ‘‘Match first nibble of the MPLS payload,’’ 〈https://
rs.opennetworking.org/bugs/browse/EXT−134 〉 (ONF members only).

Geneve J. Gross, I. Ganga, and T. Sridhar, editors, ‘‘Geneve: Generic Network Virtualization
Encapsulation,’’ 〈https://datatracker.ietf.org/doc/
draft-ietf-nvo3-geneve/ 〉 .

IEEE OUI
IEEE Standards Association, ‘‘MAC Address Block Large (MA-L),’’ 〈https://
standards.ieee.org/develop/regauth/oui/index.html 〉 .

NSH P. Quinn and U. Elzur, editors, ‘‘Network Service Header,’’ 〈https://
datatracker.ietf.org/doc/draft-ietf-sfc-nsh/ 〉 .

OpenFlow 1.0.1
Open Networking Foundation, ‘‘OpenFlow Switch Errata, Version 1.0.1,’’ June 2012.

OpenFlow 1.1
OpenFlow Consortium, ‘‘OpenFlow Switch Specification Version 1.1.0 Implemented
(Wire Protocol 0x02),’’ F ebruary 2011.

OpenFlow 1.5
Open Networking Foundation, ‘‘OpenFlow Switch Specification Version 1.5.0 (Protocol
version 0x06),’’ D ecember 2014.

OpenFlow Extensions 1.3.x Package 2
Open Networking Foundation, ‘‘OpenFlow Extensions 1.3.x Package 2,’’ D ecember
2013.

TCP Flags Match Field Extension
Open Networking Foundation, ‘‘TCP flags match field Extension,’’ D ecember 2014. In
[OpenFlow Extensions 1.3.x Package 2].

Pepelnjak
I. Pepelnjak, ‘‘OpenFlow and Fermi Estimates,’’ 〈http://blog.ipspace.net/
2013/09/openflow-and-fermi-estimates.html 〉 .

Open vSwitch 2.7.90 61

ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

RFC 793
‘‘ Transmission Control Protocol,’’ 〈http://www.ietf.org/rfc/rfc793.txt 〉 .

RFC 3032
E. Rosen, D. Tappan, G. Fedorkow, Y. Rekhter, D. Farinacci, T. Li, and A. Conta,
‘‘ MPLS Label Stack Encoding,’’ 〈http://www.ietf.org/rfc/rfc3032.txt 〉 .

RFC 3168
K. Ramakrishnan, S. Floyd, and D. Black, ‘‘The Addition of Explicit Congestion Notifi-
cation (ECN) to IP,’’ 〈https://tools.ietf.org/html/rfc3168 〉 .

RFC 3540
N. Spring, D. Wetherall, and D. Ely, ‘‘Robust Explicit Congestion Notification (ECN)
Signaling with Nonces,’’ 〈https://tools.ietf.org/html/rfc3540 〉 .

RFC 4632
V. Fuller and T. Li, ‘‘Classless Inter-domain Routing (CIDR): The Internet Address
Assignment and Aggregation Plan,’’ 〈https://tools.ietf.org/html/
rfc4632 〉 .

RFC 5462
L. Andersson and R. Asati, ‘‘Multiprotocol Label Switching (MPLS) Label Stack Entry:
‘‘ EXP’’ Field Renamed to ‘‘Traffic Class’’ Field,’’ 〈http://www.ietf.org/rfc/
rfc5462.txt 〉 .

RFC 6830
D. Farinacci, V. Fuller, D. Meyer, and D. Lewis, ‘‘The Locator/ID Separation Protocol
(LISP),’’ 〈http://www.ietf.org/rfc/rfc6830.txt 〉 .

RFC 7348
M. Mahalingam, D. Dutt, K. Duda, P. Agarwal, L. Kreeger, T. Sridhar, M. Bursell, and C.
Wright, ‘‘V irtual eXtensible Local Area Network (VXLAN): A Framework for Overlay-
ing Virtualized Layer 2 Networks over Layer 3 Networks, ’’〈https://
tools.ietf.org/html/rfc7348 〉 .

Srinivasan
V. Srinivasan, S. Suriy, and G. Varghese, ‘‘Packet Classification using Tuple Space
Search,’’ SIGCOMM 1999.

Pagiamtzis
K. Pagiamtzis and A. Sheikholeslami, ‘‘Content-addressable memory (CAM) circuits and
architectures: A tutorial and survey,’’ I EEE Journal of Solid-State Circuits, vol. 41, no. 3,
pp. 712−727, March 2006.

VXLAN Group Policy Option
M. Smith and L. Kreeger, ‘‘ V XLAN Group Policy Option.’’ I nternet-Draft. 〈https://
tools.ietf.org/html/draft-smith-vxlan-group-policy 〉 .

AUTHORS
Ben Pfaff, with advice from Justin Pettit and Jean Tourrilhes.

Open vSwitch 2.7.90 62

